
Future Generation Computer Systems 26 (2010) 389–399

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

OSLN: An Object-Oriented Semantic Link Network language for complex object
description and operation
Xiaoping Sun
China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China

a r t i c l e i n f o

Article history:
Received 3 March 2009
Received in revised form
1 June 2009
Accepted 24 July 2009
Available online 3 August 2009

Keywords:
Semantic Web
Semantic Link Network
Representation language
Object-Oriented languages

a b s t r a c t

As the semantic data grows rapidly on the Web, we need flexible and powerful tools to describe and
manage complex data, information and knowledge structures on the Web. Basic structural semantic
information of classes, instances, properties and relationships can be described using Semantic Web
languages. More and more applications need to describe and manage objects with complex structures,
operations and interactions on the Web. In this paper, we introduce an Object-Oriented Semantic Link
Network language OSLN that can be used to define complex objects with rich object-oriented semantics
on the Web. In OSLN, objects are the basic semantic elements with internal members and functions that
are declared to express attributes and semantic processes. Semantic links are defined to describe semantic
relationships among objects. Many important features from traditional object-oriented programming
languages are incorporated into OSLN, allowing users to write semantic programs for not only describing
complex structures of objects but also defining object operations and manipulations. OSLN enables users
to write semantic scripts like using traditional programming languages, which will improve both user
experiences and application areas of the Semantic Web technologies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

As the Web grows rapidly, semantic contents can be utilized
over a large-scale networked environment to implement more
intelligent information services. Semantic Web technologies have
become the standard for describing formal semantic content on
the Web [1]. RDF and RDFS are the basic elements underlying
the protocol stack of the Semantic Web technologies. In RDF,
basic elements of semantic information are represented by triples
consisting of subject, predicate and object. RDF triples can be used
to describe semantic relationships between subjects and objects.
RDFS extends RDF by defining a formal vocabulary consisting of
class and property. The OWL language incorporates Description
Logic into RDF to describe more rich semantics such as transitivity
and symmetry [2]. In OWL, TBox contains schema that describes
the basic semantic structure based on class semantics. ABox
contains assertions that are defined by deriving instances from the
elements of TBox. Reasoning tasks can be performed on TBox and
ABox to test whether an object is subsumed by another.
Both RDFS and OWL are carefully designed based on RDF to

mainly capture the class–instance relationship semantics. The
key feature of RDF is that the property, class and instance are
defined independently so that they can be defined and used at
different sites on theWeb. The open-world assumption is adopted

E-mail address: expensun@yahoo.com.cn.

in the logic framework of RDFS and OWL languages so that
semantic objects can be easily integrated on theWeb. Relationship
semantics can be easily captured using triples of RDFS and
OWL. However, when describing objects with complex internal
structures and operations, users often face many difficulties.
First, RDFS and OWL do not give a syntactical bound and

a semantic bound for defining a class with its own properties.
For example, when defining a property P for a class A, one has
to use rdf:subclassOf on a owl:Restriction element, where the
owl:Restriction element will relate class A to P that is defined
elsewhere using an owl:ObjectProperty element. This semantically
correct construction however does not explicitly indicate that
property P belongs to class A, rather, it means that class A is a sub-
class of objects that have P property.Moreover, when another class
B is derived from A, P is also inherited completely to B through A.
This will incur difficulties when B actually needs to use a different
interpretation of P , because there is no explicit overriding mecha-
nism for B to redefine P . The only way is to define a new Property
P ′ for class B.
Second, structures of class and individuals are difficult to define

by RDFS and OWL languages. There are too limited operators for
users to define and control the internal structure of a class. For
example, there is no direct way to define a dynamic set or an array
where objects will be inserted or removed in the future operations.
Third, it is hard to define reference relations between classes

and between individuals. The reference relation here means that
the value of a property P1 of class A (or an individual) is taken from

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.07.007

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:expensun@yahoo.com.cn
http://dx.doi.org/10.1016/j.future.2009.07.007


390 X. Sun / Future Generation Computer Systems 26 (2010) 389–399

a property P2 of another class B (or an individual). It is because
properties are defined outside the class and there is no direct way
to refer to a property of a specific class or an individual.
The above problems can be solved by defining new elements

and structures based on RDF. We need a framework that
encapsulates expressions and manipulations of those complex
semantic structures into a pattern that is easy to use. In this paper,
we present an Object-Oriented Semantic Link Network language
(OSLN) that is built to describe complex objects as well as their
operations. OSLN is not a new Semantic Web language. It can be
viewed as a framework that helps developers writing Semantic
Web scripts to describe complex objects and operations.
To help describing complex semantic structures, OSLN adopts

many useful semantic elements from traditional Object-Oriented
Programming (OOP) languages such as C++ and JAVA. Class–
instance relationships in OOP languages are used for code reuse,
which greatly eases the programming process for developers. Se-
mantics of OOP languages are defined for code compiling and
running but not for semantic interpretation of codes themselves,
which is quite different from Semantic Web languages that have a
model-theory-based semantic interpretation schema. Traditional
OOP languages have many useful structures and operators such as
encapsulation, overriding, and polymorphism that should be very
useful also for Semantic Web languages. These operators and fea-
tures not only can be used for code organization and reusing, but
also can be used for directly representing semantics of contents.
Encapsulation will give a clear bound for objects that have inter-
nal properties. Overriding and polymorphism will provide flexible
semantic object manipulations and integrations. OSLN incorpo-
rates those structures and operators fromOOP languages to enable
developers write Semantic Web programs more easily and more
expressively.
Another important feature of OSLN is that it uses a set of

operators from Semantic Link Network (SLN) [3,22] language to
implement semantic reference among objects in OSLN. In the
SLN language, relation triples are used to represent semantic
relationships between objects. A set of predefined relation
operators is provided in SLN including imply, cause–effect, reference
and so on. These semantic operators are different from those
relationships in RDFS and OWL in that SLN explicitly gives each
operator a specific concrete semantic meaning, rather than giving
some properties of relationships (such as symmetry, reflexive,
and reversible). From this aspect, SLN can be viewed as a specific
pattern of RDF triples. OSLN uses the reference link from SLN to
represent a reference relationship between two objects. Other
semantic link operators can also be used to describe relationships
between a set of semantic codes and another set of semantic codes.
The principle design rationale behind OSLN is to provide

programmers an easy-to-use platform to help them transfer
from traditional OOP language environments to Semantic Web
languages. Using OSLN, developers can express formal semantics
content and control the content dynamically using semantic codes.
Wewill introduce the details of OSLN by starting with an example.

2. Application example

To illustrate the using scenarios of the OSLN language, let us
first consider an application that provides information services for
the maintenance and the protections of Chinese ancient buildings.
In this application, we need to describe structures of ancient
buildings as well as the information of repairing and protection
processes of ancient builds. It is difficult to use Semantic Web
languages to describe those complex structures. Database systems
are also too rigid to support recording semi-structured data. We
need a flexible, easy-to-use, and extensible language platform for
semi-structural knowledge representation and semantic queries.

It is important that the language can be easily grasped by non-
computer-professional users.
The structures of an ancient building should be described for-

mally. Different building parts and their relationships inside the
building need to be explicitly represented. There are also many re-
lated background knowledge data for the building and its internal
parts. Repairing knowledge and repairing cases need to be docu-
mented for future querying and sharing. Moreover, many struc-
tures of data cannot be defined in advance because they depend
on the data and information used during the building repairing
process. Knowledge construction and representation are rather ad
hoc. Knowledge described in previous work can be augmented,
reduced, or updated by new repairing processes. Finally, this ap-
plication runs on the Web for the distributed knowledge sharing
and management.
In the following examples, we show how to use OSLN to define

basic objects of Chinese ancient buildings and manipulate the
semantic data.

2.1. Object definition

In this application, many resources and information of building
structures are often descriptive texts from which one has to draw
formal semantic contents. For example, a description of girderswill
be like this: A traditional Chinese girder in a building, also named
Fang, is a main horizontal support beam of wood. The cross section of
most girders in North China is of rectangle shape. Girders of buildings
in Song Dynasty is of square section and girders in Ming Dynasty often
have a rectangle section with the ratio of length to width being 3:2. In
south China, however, girders of ancient buildings often have a section
of circle.
The basic element of the OSLN language is the object. To give

a more formal description, we need to abstract objects from above
descriptions.We first define an object BuildingObject for represent-
ing the general concept of building objects. Then, we define an ob-
ject Girder that is derived from the object BuildingObject. We also
define an object GirderOfSong for the girders of the Song Dynasty
and an object GirderOfMing for the girders of the Min Dynasty.
As shown in Fig. 1, the object BuildingObject declares four public

members of string types. Public members can be accessed by other
objects. A member with a delimiter TRANS will be inherited by
the sub-classing objects. For example, in the Fig. 1 the member
declarations of function, name, date, and location in the object
BuildingObject will be inherited by the object Girder and the sub-
classing objects of Girder. But the value of the public members will
not necessarily be inherited unless the TRANS is used to delimit
assignment operator ‘‘ =’’. For example, the value of the member
functionwill be also inherited by the object Girder. Values of other
members such as name, date, and location will not be inherited
by the sub-classing objects. Thus, the member name in the object
Girder will not have the value ‘‘Building Ware’’.
The object Girder is derived from the object BuildingObject. The

member name derived from BuildingObject is assigned with a new
value {‘‘Girder’’ | ‘‘Fang’’}, which means that either ‘‘Girder’’ or
‘‘Fang’’ is the value of the member. The shape of section of girders
needs to be described. It is defined as a propertymember section in
the object Girder. A member sectionwill be assigned with different
values according to the value of the member location and date. IF-
THEN clauses are used to assign different values to the member
section according to the date and the location of girders. Note that
the value of section defined in Girder will be also inherited by
the object GirderOfSong and the object GirderOfMing. Since date
in GirderOfSong is set to Ming, the member section will return
squarewhen the girder belongs to a north China building. Thus, we
do not have to redefine the member section for GirderOfSong and
GirderOfMing.



Download English Version:

https://daneshyari.com/en/article/424811

Download Persian Version:

https://daneshyari.com/article/424811

Daneshyari.com

https://daneshyari.com/en/article/424811
https://daneshyari.com/article/424811
https://daneshyari.com

