
Future Generation Computer Systems 59 (2016) 47–62

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

DiVers: An erasure code based storage architecture for versioning
exploiting sparsity
J. Harshan a,∗, Anwitaman Datta b, Frédérique Oggier a
a Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
b School of Computer Engineering, Nanyang Technological University, Singapore

h i g h l i g h t s

• A networked storage architecture called DiVers is proposed to store versioned data.
• Sparsity exploiting erasure coding is used to reduce storage overhead in DiVers.
• Reliability aspect for DiVers is addressed to achieve best fault tolerance.
• System level issues such as metadata management and network protocol are discussed.

a r t i c l e i n f o

Article history:
Received 17 July 2015
Received in revised form
23 December 2015
Accepted 13 January 2016
Available online 29 January 2016

Keywords:
Datacenter networking
Version management
Fault tolerance
Erasure coding

a b s t r a c t

We propose a differential versioning based data storage (DiVers) architecture for distributed storage
systems, which relies on a novel erasure coding technique that exploits sparsity across versions. The
emphasis of this work is to demonstrate how sparsity exploiting codes (SEC), originally designed for I/O
optimization, can be extended to significantly reduce storage overhead in a repository of versioned data.
In addition to facilitating reduced storage, we address some key reliability aspects for DiVers such as
(i) mechanisms to deploy the coding technique with arbitrarily varying size of data across versions, and
(ii) investigating the right allocation strategy for the encoded blocks over a network of distributed nodes
across different versions so as to achieve the best fault tolerance. We also discuss system issues related to
themanagement of data structures for accessing andmanipulating the files over the differential versions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

After years of hesitation, compelled both by cost implications
borne from the scale of data volumes, and by advances in hardware
and implementation optimization, erasure codes have in the recent
years been enthusiastically embraced by major industry players
dealing with big volume of data, e.g. Microsoft’s Azure [1] and
Facebook’s F4 [2]. This has piqued a renewed research interest
in designing erasure codes that are particularly suited to the
needs of networked storage systems. The focus has primarily
been on efficient repairs and recovery from failures [3,4]. Most
existing erasure coding techniques have no inherent support
or optimization for storing multiple versions as and when data
mutates.

The need to store multiple versions of data arises in many
scenarios. For instance, when editing and updating files, users may

∗ Corresponding author.
E-mail address: jharshan@ntu.edu.sg (J. Harshan).

want to explicitly create a version repository using a framework
like SVN [5] or Git [6]. Cloud based document editing or storage
services also often provide the users access to older versions of
the documents. In system level back-up, where whole file systems
or databases are archived, versions would refer to the different
snapshots over time. In either of the two file-centric settings,
irrespective of whether a working copy used during editing is
stored locally or on the cloud, or in a system level back up, say using
copy-on-write [7], the back-end storage system needs to preserve
the different versions reliably, and can leverage on erasure coding
for reducing the storage overheads.

A naive approach will be to apply coding to each version
independently. In a recent work [8], we proposed Sparsity
Exploiting Codes (SEC) to optimize the I/O performance of storage
systems storing and manipulating multiple versions of data, by
leveraging techniques from sparse sampling [9]. Motivated by the
practical issues arising from SEC’s differential coding approach, we
address the design of an erasure coding based storage architecture
supporting versioning. We demonstrate how Sparsity Exploiting
Codes (SEC) [8], originally designed for I/O optimization, can be

http://dx.doi.org/10.1016/j.future.2016.01.005
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.01.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.005&domain=pdf
mailto:jharshan@ntu.edu.sg
http://dx.doi.org/10.1016/j.future.2016.01.005


48 J. Harshan et al. / Future Generation Computer Systems 59 (2016) 47–62

extended to significantly reduce storage overhead in a repository
of versioned data.We show that sparsity in the difference between
successive versions of an object can be exploited to efficiently
store the difference objects (typically referred to as deltas) rather
than the whole objects. It is evident that this approach results in
deltas whose sizes are variables (depending on the update pattern)
rather than fixed numbers. As a result, contrary to the conventional
usage of erasure coding which assumes fixed sized data objects,
the design and deployment of our proposed codes need to handle
variable sized deltas across different versions. The central focus of
this work is thus to explore new techniques that take into account
the peculiarities of deltas across versions, while addressing the age
old two-fold problem of storing data efficiently and reliably.

1.1. Contributions

(i) We first tackle the aspect of efficiently storing versioned data.
In Section 2, we demonstrate how SEC can be extended to
reduce storage overhead in a repository of versioned data. We
then propose the overall architectural design of DiVers (see
Section 3), where we address a practical way to encode and
store mutable content. Indeed, the design of erasure codes
usually assumes fixed sized data objects, to be divided into
fixed sized blocks of data. Furthermore, even if a single bit
in one of the blocks changes, the coding semantic treats it
as a distinct block. Consequently, even a minor change near
the start of a file (during the update process) may ripple
changes across all the blocks at the coding granularity. This
would in particular render the sparse sampling techniques
of SEC useless, and obliterate the consequent benefits. We
incorporate zero padding schemes into DiVers to ameliorate
the aforementioned problems, taking into account insertions,
deletions and in-place alterations in the update process.

(ii) We then explore the reliability aspect of DiVers’ design.
As a consequence of employing sparsity based compression
technique, we note that the deltas associated with different
versions are potentially of different sizes. One straightforward
option to encode such variable sized deltas is to fix the symbol
size of erasure coding and then choose different dimensional
erasure codes based on the size of deltas (depending on
the sparsity level). However, to cater to different sizes, the
architecture would need to manage multiple erasure codes,
which is undesirable in practice. In Section 4, we propose
an erasure coding framework wherein a single erasure code
can be employed to cater to variable sized deltas, thus
making it more practical than using multiple erasure codes.
Further, we address the problem of allocating encoded blocks
from different versions across a pool of servers to realize
best fault tolerance. In Section 5, we specifically investigate
placement strategies exploring whether to store the encoded
blocks across different versions in a scattered manner across
different clusters of servers, or in a co-located manner within
a single group.

(iii) Subsequently, two critical aspects of the DiVers design,
which form further important contributions of this paper,
are discussed in Sections 6 and 7. Access of relevant data
has to be supported by appropriate meta-information since
the differences among consecutive versions, rather than full
copy of a new version of data are encoded and stored
in a dispersed manner, and additionally, because of the
introduction of zero-padding. In Section 6, we elaborate the
data structure to encapsulate thenecessarymeta-information.
Then, in Section 7 we elaborate a protocol that explores the
interactions among storage nodes for an application client to
be able to manipulate versioned data in DiVers.

The modules and algorithms presented in the paper have been
implemented individually, but an actual working versioned file
system integrating everything has not been implemented. Storage
gains offered by the DiVers architecture are evaluated through
simulations of the algorithm in Section 8, where we explore the
effect of quantum and placement of zero pads, and demonstrate
the storage efficiency against a wide range of realistic workloads.

1.2. Related work

Although erasure coded systems have received great interest
in the recent past [10–14] to store large volumes of data, it is
worth highlighting that system implementations of erasure codes
were addressed in the past in the context of Peer-to-Peer systems
[15–17]. In terms of versioned data, [18] had proposed a family of
consistency protocols that exploits data versioning within storage
nodes. In this work, the primary objective was to ensure strong
consistency of erasure coded data across a network of storage de-
vices. In general, reliability and storage aspects of versioned data
fall under the broad area of data deduplication, which addresses al-
gorithms to clean up redundant and unnecessary data chunks from
anetwork of storage nodes (see [19] and the referenceswithin). Re-
cently, [20] has identified the fact that most storage systems such
as Microsoft Azure or EMC Atmos support appending operations
in the file storage systems, thereby, leading to increased amount
of redundant storage. To fix that, the authors of [20] integrate
the deduplication capabilitywith erasure coding techniques.Wang
and Cadambe [21] have addressed multi-version coding for dis-
tributed data, where the underlying problem is to encode different
versions so that certain subsets of storage nodes can be accessed to
retrieve themost common version among them. Their strategy has
been shown applicable when the updates for the latest version do
not reach all the nodes, possibly due to network problems.More re-
cently, in [22], the authors consider the problem of synchronizing
data in storage networks under an edit model that includes dele-
tions and insertions, where the authors propose several variants of
erasure codes that allow updates on the parity check values with
low-bit rates and small storage overhead. Unlike the above listed
related works, we propose an erasure-code based system architec-
ture to store versioned data by exploiting the underlying sparsity
in the difference between subsequent versions of data objects.

We next present a formal model for our sparsity exploiting
erasure coding technique, summarizing and then extending [8].

2. Background: sparsity exploiting erasure coding

We first summarize how ideas from compressed sensing
can be used to encode differences between versions of some
data differentially, optimizing I/O operations for simultaneously
reading multiple versions, a technique that we refer to as sparsity
exploiting coding (SEC) [8]. We then build upon the existing work
on SEC, and show how to furthermore achieve storage savings,
while storing versioned data. The rest of the paper would then
explore the DiVers architecture for storing versioned data using
this enhanced storage saving differential coding technique. To
demonstrate its practicality and compatibility, we will anchor our
exposition of DiVers as tweaks/adaptation to existing architecture
like GFS [23].

2.1. Preliminaries

Consider a fixed sized data object, denoted by x ∈ Fk
q to be

stored over a network, so that the object is seen as a vector of k
blocks taking value in the alphabet Fq, with Fq the finite field with
q elements, q a power of 2 typically. Encoding for archival of an



Download English Version:

https://daneshyari.com/en/article/424858

Download Persian Version:

https://daneshyari.com/article/424858

Daneshyari.com

https://daneshyari.com/en/article/424858
https://daneshyari.com/article/424858
https://daneshyari.com

