
Future Generation Computer Systems 59 (2016) 114–124

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Application skeletons: Construction and use in eScience
Daniel S. Katz a,∗, Andre Merzky b, Zhao Zhang c, Shantenu Jha b

a Computation Institute, University of Chicago & Argonne National Laboratory, Chicago, IL, USA
b RADICAL Laboratory, Rutgers University, New Brunswick, NJ, USA
c AMPLab, University of California, Berkeley, CA, USA

h i g h l i g h t s

• Skeleton applications represent the key parameters of parallel and distributed eScience applications.
• Skeleton applications are easy-to-program, easy-to-build, and easy-to-use, and easy-to-share.
• Skeleton applications have similar performance to the real applications on which they are based.
• Skeletons application are built from an open source: https://github.com/applicationskeleton/Skeleton.
• Skeleton applications can be used to demonstrate system optimizations.

a r t i c l e i n f o

Article history:
Received 24 March 2015
Received in revised form
18 September 2015
Accepted 3 October 2015
Available online 22 October 2015

Keywords:
Computational science
Data science
Application modeling
System modeling
Performance modeling
Parallel and distributed systems

a b s t r a c t

Computer scientists who work on tools and systems to support eScience (a variety of parallel and
distributed) applications usually use actual applications to prove that their systems will benefit science
and engineering (e.g., improve application performance). Accessing and building the applications and
necessary data sets can be difficult because of policy or technical issues, and it can be difficult to modify
the characteristics of the applications to understand corner cases in the system design. In this paper,
we present the Application Skeleton, a simple yet powerful tool to build synthetic applications that
represent real applications, with runtime and I/O close to those of the real applications. This allows
computer scientists to focus on the system they are building; they can work with the simpler skeleton
applications and be sure that their work will also be applicable to the real applications. In addition,
skeleton applications support simple reproducible system experiments since they are represented by a
compact set of parameters.

Our Application Skeleton tool (available as open source at https://github.com/applicationskeleton/
Skeleton) currently can create easy-to-access, easy-to-build, and easy-to-run bag-of-task, (iterative)map-
reduce, and (iterative) multistage workflow applications. The tasks can be serial, parallel, or a mix of
both. The parameters to represent the tasks can either be discovered through a manual profiling of the
applications or through an automated method. We select three representative applications (Montage,
BLAST, CyberShake Postprocessing), then describe and generate skeleton applications for each. We show
that the skeleton applications have identical (or close) performance to that of the real applications. We
then show examples of using skeleton applications to verify system optimizations such as data caching,
I/O tuning, and task scheduling, as well as the system resilience mechanism, in some cases modifying the
skeleton applications to emphasize some characteristic, and thus show that using skeleton applications
simplifies the process of designing, implementing, and testing these optimizations.

Published by Elsevier B.V.

1. Introduction

Computer scientists who build tools and systems (program-
ming languages, runtime systems, file systems, workflow systems,

∗ Corresponding author.
E-mail addresses: d.katz@ieee.org (D.S. Katz), andre@merzky.net (A. Merzky),

zhaozhang@eecs.berkeley.edu (Z. Zhang), shantenu.jha@rutgers.edu (S. Jha).

etc.) to enable eScience often have to work on real scientific ap-
plications to prove the effectiveness of the system. Accessing and
building the real applications can be time consuming or sometimes
infeasible for one or more of the following reasons:

• Some applications (source) are privately accessible.
• Some data are difficult to access.
• Some applications use legacy code and are dependent on out-

of-date libraries.

http://dx.doi.org/10.1016/j.future.2015.10.001
0167-739X/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.future.2015.10.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.10.001&domain=pdf
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
https://github.com/applicationskeleton/Skeleton
mailto:d.katz@ieee.org
mailto:andre@merzky.net
mailto:zhaozhang@eecs.berkeley.edu
mailto:shantenu.jha@rutgers.edu
http://dx.doi.org/10.1016/j.future.2015.10.001


D.S. Katz et al. / Future Generation Computer Systems 59 (2016) 114–124 115

• Some applications are hard to understand because they
implicitly assume domain knowledge.

In addition, real applications may be difficult to scale or mod-
ify in order to demonstrate system trends and characteristics. Our
work is partially motivated by the state of distributed applica-
tions. We previously highlighted the challenges of developing dis-
tributed applications, showing that the lack of development ab-
stractions and the complexity of deployment were two important
barriers [1,2].

Our Application Skeletons idea was created in the AIMES
project, whose goal is to explore the role of abstractions and in-
tegratedmiddleware to support eScience at extreme scales. AIMES
is co-designingmiddleware from an application and infrastructure
perspective. Thus, it requires applications with various character-
istics for better application coverage. We have previously encoun-
tered many problems when accessing real applications and when
trying to distribute applications and data as test cases to other re-
searchers. Application Skeletons are intended to overcome these
issues.

We previously presented [3] the Skeleton idea of working
around such issues by quickly and easily producing a synthetic
distributed application that is executable in a distributed environ-
ment, for example, grids, clusters, and clouds, and then showed [4]
improvements in reducing the gap between skeleton and real ap-
plication performance, as well as showing Skeleton applications
could be used to simplify understanding and demonstrating sys-
tem optimizations, such as AMFORA [5].

The Application Skeleton tool takes as input an application
description file composed in a top-down approach: an application
was described as a number of stages, and each stage had a number
of tasks. Users specify tasks at the stage level by articulating
the number of tasks, task lengths, and input/output file sizes.
Applications canbe composedof serial tasks, parallel tasks, or amix
of both. The task is implemented as a versatile C program, and the
compiled executable can be serial or parallel dependent on how it
is compiled. Users can specify a task’s read/write buffer size, since
such buffers are often used in real application code. The Skeleton
task can mimic real application tasks’ interleaving behavior for
reads, writes, and computation. The tasks are C programs compiled
to static executables, so they can run on supercomputers with
an OS that does not have fork()/exec() support, such as the IBM
Blue Gene/Q. Some of the task parameters, such as task lengths
and input file sizes, can be described as a statistical distribution.
The task implementation is based on the UNIX/Linux sleep and dd
programs, controlling the CPU time and I/O, respectively.

This Skeleton implementation can generate bag-of-task, (iter-
ative) map-reduce, and (iterative) multistage workflow applica-
tions. The skeleton applications are executable with common dis-
tributed computing middleware, Swift [6–8] and Pegasus [9,10],
as well as the ubiquitous UNIX shell on a single site (a local cluster
with a shared file system), and the skeleton set of tasks can also be
output as a generic JSON object that can be used by other systems,
such as in our case, by our AIMES middleware.

Skeleton parameters can be discovered by either bymanually or
automatically profiling the application. Once the real application
is represented by a Skeleton description file, it can easily be
distributed and reused. We measured the performance error
between the skeleton application against three real applications
(Montage [11,12], BLAST [13], andCyberShake PostProcessing [14])
on 64 processors of a BG/P supercomputer with per stage and total
errors of between 1 and 3%. And changing the parameters makes
it easy to study how the system responds to different application
characteristics, specifically data caching, task scheduling, I/O
tuning, and resilience mechanism.

This paper summarizes our previous work [3,4] and adds
further work toward automated, system independent application

profiling. Specifically, almost all of Section 4 is new, and Section 2
(related work) has been expanded to provide better context for
our work; as such, it also has been moved to earlier in the paper.
Sections 3 and 5 were initially shortened to focus on key points
and then modified to include automated profiling, then further
modified as part of the reviewprocess. The introduction (Section 1)
and conclusions (Section 7) have been reworked for this paper but
used the introductions and conclusions of the previous papers as
starting points. Section 6 has just been condensed from [4].

The contributions of this work include the following:

• An application abstraction that gives users good expressiveness
and ease of programming to capture the key performance
elements of distributed applications.

• A versatile Skeleton task implementation that is configurable
(serial or parallel, number of processes, read/write buffer size,
input/output files, interleaving options).

• A comparison of two methods for the estimation of Skeleton
parameters: manual, system specific application profiling
versus automated, system independent profiling.

• An interoperable Skeleton implementation that works with
mainstream workflow frameworks and systems (Swift, Pega-
sus, and Shell), and allow general output for other systems.

• The usage of Skeleton applications to simplify system optimiza-
tion implementation and highlight their impacts.

The rest of the paper is organized as follows: Section 2 discusses
the idea of application modeling, including related work. Section 3
introduces the design of the Application Skeleton tool and the
tradeoffs we made during the process. In Section 4, we discuss
how Skeleton parameters can be determined. In Section 5, we
select three representative applications, and compare the Skeleton
application performance against the real application performance.
In Section 6, we show how application skeletons can help eScience
infrastructure developers. Conclusions are drawn in Section 7.

2. Modeling background and related work

Researchers have been using application replacements of
various types (e.g., kernels, benchmarks, reduced applications,
miniapps, traces) for experiments for a long time, and some of
those replacements have been and are certainly tunable in oneway
or another. These application replacements are used for a variety
of purposes, including:

• They are easier to build than the actual application.
• They can be reused across different system to compare those

systems.
• They run faster than the actual application.
• They can be shared with collaborators who do not have access

to the application or the data.

However, we believe that the idea of using application
skeletons, particularly for overall system performance, is relatively
novel. The distinction in our work is that the Skeletons provide
a systematic application replacement capability, which both
preserves the significant part of the application’s behavior and
is tunable across a range of diverse applications. Because of the
problem space is pervasive but attempts to solve it systematically
are rare, particularly for distributed applications, the related work
we discuss here are examples of some of the different types of
application replacements that have been used.

Examples of benchmarking/analysis work in a parallel (not
distributed) context include the NAS Parallel Benchmarks [15],
and Berkeley Dwarfs [16] (also called ‘motifs’) and the related
OpenDwarfs [17]. The NAS benchmarks include both kernels
and pseudo-applications (an example of reduced applications),
intended for use on parallel (not distributed) computers. These



Download English Version:

https://daneshyari.com/en/article/424863

Download Persian Version:

https://daneshyari.com/article/424863

Daneshyari.com

https://daneshyari.com/en/article/424863
https://daneshyari.com/article/424863
https://daneshyari.com

