Future Generation Computer Systems 59 (2016) 125-135

Contents lists available at ScienceDirect 4
FiGICIS
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs e

LBBA: An efficient online benefit-aware multiprocessor scheduling for

@ CrossMark

QoS via online choice of approximation algorithms

Behnaz Sanati*, Albert M.K. Cheng

Real-Time Systems Laboratory, Computer Science Department, University of Houston, TX, USA

HIGHLIGHTS

We propose LBBA, an online benefit-aware scheduling method for aperiodic tasks.
Efficient strategy for better QoS in overloaded soft real-time multiprocessor systems.
LBBA maximizes total gained benefit and minimizes the makespan at the same time.
It uses online choice of two approximation algorithms, Greedy and Load-balancing.

It improves QoS by maximizing the total gained benefit and reducing missed job ratio.

ARTICLE INFO

ABSTRACT

Article history:

Received 16 January 2015
Received in revised form

9 September 2015

Accepted 31 October 2015
Available online 2 December 2015

Keywords:

Real-time scheduling
Multiprocessor
Embedded system
Partitioning
Load-Balancing

Maximizing the benefit gained by soft real-time jobs in many applications and embedded systems is
highly needed to provide an acceptable QoS (Quality of Service). This paper considers a benefit model
for on-line preemptive multiprocessor scheduling. The goal is to maximize the total benefit gained by
the jobs that meet their deadlines. This method prioritizes the jobs using their benefit density functions
and schedules them in a real-time basis. We propose an online choice of two approximation algorithms
in order to partition the jobs among identical processors at the time of their arrival without using any
statistics. Our analysis and experiments show that we are able to maximize the gained benefit and
decrease the computational complexity (compared to existing algorithms) while minimizing makespan
(response time, also referred to as cost), with fewer missed deadlines and more balanced usage of
processors. Our solution is applicable to a wide variety of soft real-time applications and embedded
systems such as, but not limited to multimedia applications, medical monitoring systems or those with
higher utilization such as bursty hosting servers.'

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multiprocessor platforms are widely adopted for many differ-
ent applications in embedded systems and server farms. They are
becoming even more popular since many chip makers including
Intel and AMD are releasing multi-core chips. Adopting multi-
processor platforms can enhance the system performance, but
scheduling jobs optimally on a multiprocessor system is an
NP-hard problem [1,2].

There are two major models for this scheduling problem. The
first is the cost model; its goal is to minimize the cost, which is

* Corresponding author.
E-mail addresses: bsanati@cs.uh.edu (B. Sanati), cheng@cs.uh.edu
(A.M.K. Cheng).
1 This research is done by Behnaz Sanati and supervised by Professor Albert
Cheng.

http://dx.doi.org/10.1016/j.future.2015.10.024
0167-739X/© 2015 Elsevier B.V. All rights reserved.

the overall flow time, also referred to as response time or makespan.
The second model is the benefit model which aims to maximize
the benefit of jobs that meet their deadlines. The latter model is
used for soft real-time applications in which deadline misses are
sometimes tolerable. Examples of such applications using multi-
core platforms are multi-purpose home appliances such as HDTV
streaming and interactive video games. More motivating examples
from the domains of multimedia, air defense and enterprise-level,
asynchronous, cooperating real-time computer systems are given
by Welch and Brandt [3]. Other examples of such applications and
embedded systems which use multi-core platforms are multime-
dia applications as explained in [4], image and speech process-
ing [5-8], time-dependent planning [9], robot control/navigation
systems [10,11], medical decision making [12], information gath-
ering [13], real-time heuristic search [14], database query process-
ing [15], and Internet of Things (IoT) [16].

In our research, we mainly focus on the benefit model
to maximize the benefit of online preemptive scheduling of

http://dx.doi.org/10.1016/j.future.2015.10.024
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.10.024&domain=pdf
mailto:bsanati@cs.uh.edu
mailto:cheng@cs.uh.edu
http://dx.doi.org/10.1016/j.future.2015.10.024

126 B. Sanati, AM.K. Cheng / Future Generation Computer Systems 59 (2016) 125-135

soft real-time jobs on multiprocessor systems having identical
processors. In the meanwhile, we propose an online choice of two
approximation algorithms, Greedy and Load-Balancing, to reduce
the cost or makespan. More balanced distribution of the jobs
between processors in our novel approach results in a lower overall
flow time, less total idle time, fewer missed deadlines and more
efficient usage of CPU cycles. Also, in our model, the NP hard
problem of multiprocessor scheduling is reduced into uniprocessor
scheduling problem by partitioning the tasks at their arrival time.

In the following subsections, we provide an overview of
previous works on approximation algorithms and maximizing
benefit on-line for multiprocessors. Section 2 presents the details
of our new approach and an example to illustrate its differences
from the previous methods. The analysis of the new method is
provided in Section 3. Section 4 contains the performance metrics
and our experimental settings and results. Finally the conclusions
of this research are presented in Section 5.

1.1. Related work on approximation algorithms

Approximation algorithms are often used to attack difficult
optimization problems, such as job scheduling on multiprocessor
systems which is an NP-hard problem [1,17,18]. An approximation
algorithm settles for non-optimal solutions found in polynomial
time, when it is very unlikely to find an efficient exact algorithm
to solve NP-hard problems, or the sizes of the data sets are so large
that they make the polynomial exact algorithms too expensive.

A Greedy 2-approximation algorithm is used in [19] for fault tol-
erance and in [20] for benefit maximization in identical multipro-
cessor systems. Even though Greedy approximation can be a good
solution in many cases, a load balancing approximation can result
in a shorter flow time for a set of jobs when we have to distribute
several jobs among multiple processors at the same time [21,22].
Piel et al. [23] have proposed a load balancing technique based on
statistics for real-time scheduling on asymmetric multiprocessors.
They apply partitioning for high priority jobs and migration for jobs
with low priority.

1.2. Related work on benefit-aware real-time computing

The gained benefit can vary when using different benefit func-
tions. Researchers have investigated applying benefit functions for
allocating resources in limited, soft real time systems [24-26]. An-
drews et al.[27] provided a framework to formalize the use of ben-
efit functions in complex real time systems.

Buttazzo et al. [28] provided the results of studying jobs
that are characterized by an importance value. The performance
of the scheduling algorithm was then evaluated by computing
the cumulative value (or benefit) gained on a job set. However,
the target of their research was uniprocessor scheduling. Welch
et al. [3] discussed how benefit is used in a variety of real-time
paradigms and in example applications. Awerbuch et al. presented
a constant competitive ratio algorithm for a benefit model of on-
line preemptive scheduling [29]. This method can be used on
both uniprocessor and multiprocessor systems. Aydin et al. [30]
proposed a reward-based scheduling method for periodic real-
time tasks and [31] presented on-line scheduling policies for a class
of IRIS (Increasing Reward with Increasing Service) real-time tasks.

2. Our contribution: online choice of approximation algo-
rithms

The algorithm proposed in [29] only focuses on maximizing
the total benefit gained without being concerned with minimizing
the overall flow time of a job set (response time or makespan). In
the meanwhile, in that method, the benefit gained by each job

that completes its execution is calculated using the benefit density
function of its flow time. This function is a non-increasing, non-
negative function of time, by definition [29]. It means the more the
flow time, the less the benefit gained.

Therefore, we proposed, simulated and analyzed an efficient
online benefit-aware technique with choices of approximation al-
gorithms including Greedy and load balancing to partition jobs
among multiple processors at the time of release. This method pri-
oritizes the jobs using their benefit density functions and schedules
them in a real-time basis in order to reduce the makespan (overall
flow time) of the jobs and total idle time of the processors while
maximizing the total gained benefit.

We also used our online choice of two approximation algo-
rithms (Greedy and Load-Balancing) as a solution for special cases
that were not considered in the existing benefit-aware multipro-
cessor scheduling algorithms such as the Benefit-Based Algorithm
proposed in [29] which we refer to as BBA in the rest of this paper.
Examples of those cases are when there are several high priority
jobs which can preempt a running job or when a high priority job
can preempt more than one running job.

In order to be able to balance the workload among the
processors by partitioning the jobs as soon as they are released,
we consider a separate pool of the waiting jobs for each processor.
Our method is referred to as Load-Balancing/Greedy Benefit-Aware
algorithm (or LBBA) throughout the paper. This load balancing
technique is different from what Piel et al. [23] have used, since
we do not use statistics for distributing the jobs. Instead, we
make decisions online by using the actual (worst case) execution
times of ready jobs and the remaining workload of the processors
for partitioning on a real-time system with identical processors.
Migration is not allowed in our real-time system model.

LBBA is superior to BBA in principle, since:

LBBA is a novel hybrid model of soft real-time multiprocessor
scheduling. Despite of BBA, which only follows benefit model,
LBBA is a combination of benefit model and cost model. That
is, it aims to minimize makespan in order to achieve the
maximum benefit at the lowest cost.

e Reducing multi-processor scheduling into uniprocessor
scheduling: BBA uses one pool shared by all the processors
to keep the ready jobs while they are not scheduled. Hence,
partitioning of each job is done when it is scheduled, and starts
running on the assigned processor. Considering a separate pool
for each processor, enables the LBBA scheduler to partition the
jobs at their arrival time. The advantage of this method of early
partitioning is that the NP-Hard problem of multiprocessor
real-time scheduling will be reduced to a series of uniprocessor
real-time scheduling.

o LBBA facilitates load-balanced partitioning of waiting jobs,
while this case is not considered in BBA. For example, in case
the waiting (or ready) jobs arrive asynchronously, then LBBA
adapts the “Greedy Approximation” to assign a job to the pool
of the processor with the least remaining workload. If jobs are
synchronous, i.e. arrive at the same time, those that cannot start
running and have to wait in a pool, will be partitioned among
the processors, using our “Load-Balancing” technique.

LBBA optimizes the CPU usage and minimizes the total idle

time of the processors by balancing the workload among them.

e It improves Quality-of-Service (QoS) by reducing missed
deadline ratio: As shown by an example in 2.4, LBBA reduces
the possibility of starvation for low priority jobs, comparing
to BBA. It also has Minimal Response time, including both
scheduling and execution time, for a job set (up to 300% faster
response time than BBA in our experiments shown in 4.1.2.).

e LBBA is computationally less expensive than BBA, as we prove

in Section 3.2.

Download English Version:

https://daneshyari.com/en/article/424864

Download Persian Version:

https://daneshyari.com/article/424864

Daneshyari.com

https://daneshyari.com/en/article/424864
https://daneshyari.com/article/424864
https://daneshyari.com

