Future Generation Computer Systems 56 (2016) 171-178

Contents lists available at ScienceDirect
FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs —

RT-ROS: A real-time ROS architecture on multi-core processors

CrossMark

@

Hongxing Wei®!, Zhenzhou Shao®, Zhen Huang?, Renhai Chen ¢, Yong Guan®,

Jindong Tan®!, Zili Shao %

2School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China

b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China

¢ Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA
4 Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

ARTICLE INFO

ABSTRACT

Article history:

Received 6 February 2015
Received in revised form

20 April 2015

Accepted 12 May 2015
Available online 9 June 2015

Keywords:

Real-time operating systems
Robot Operating Systems
Multi-core processors

ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics
community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks
are required in many robot applications such as robot motion control. This paper for the first time presents
a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated
real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be
separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way,
real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes
on Linux can provide other functions of ROS. Furthermore, high performance is achieved by executing
real-time ROS nodes and non-real-time ROS nodes on different processor cores. We have implemented
RT-ROS on a dual-core processor and conducted various experiments with real robot applications. The
experimental results show that RT-ROS can effectively provide real-time support for the ROS platform

with high performance by exploring the multi-core architecture.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

ROS, an open-source robot operating system, has been being
rapidly developed and widely used in the robotics community [1].
Based on the ROS framework, many researchers have developed
their software for diverse robots such as Barrett WAM [2] and
Raven-II [3]. However, ROS runs on Linux, and cannot provide real-
time guarantees. This limits its usage, as real-time tasks are re-
quired in many robot applications such as robot motion control.
Therefore, it becomes a key issue to make ROS be real-time. On
the other hand, multi-core processors offer a promising platform
for robot applications. Compared to the traditional robot com-
puting platform with separated host and guest systems, a multi-
core processor can provide more powerful computing capacity and
less communication overhead. Thus, it is also vitally important
to effectively run ROS on multi-core processors by exploring the

* Corresponding author.
E-mail addresses: weihongxing@buaa.edu.cn (H. Wei), guanyxxxy@263.net
(Y. Guan), tan@utk.edu (J. Tan), cszlshao@comp.polyu.edu.hk (Z. Shao).

1 Member, IEEE.

http://dx.doi.org/10.1016/j.future.2015.05.008
0167-739X/© 2015 Elsevier B.V. All rights reserved.

multi-core architecture for robot applications. This paper focuses
on solving the problem of making ROS be real-time with high per-
formance on multi-core processors.

To make ROS be real-time, a common approach is to run real-
time tasks on guest embedded systems and run non-real-time
tasks on a host system such as in ROS Industrial and ROS Bridge [4].
However, by separating ROS tasks into different computing sys-
tems, it not only introduces big communication overhead but also
increases the manufacturing cost. In fact, a multi-core processor
such as Intel Pentium multi-core processors is powerful enough to
run both real-time and non-real-time tasks of ROS. Implementing
ROS based on a system with a multi-core processor can help re-
duce communication overhead by replacing inter-system commu-
nication with inter-core communication, decrease the system cost
and simplify the system design. However, it is still an open issue
for how to make ROS be real-time on multi-core processors.

There are challenges to make ROS be real-time on multi-core
processors. First, considering the portability, a real-time OS en-
vironment should be provided to support the execution of real-
time ROS tasks. It is challenging to run both a real-time OS and a
general-purpose OS without interfering each other on multi-core
processors. In particular, it is not trivial to provide a mechanism so
interrupts, devices and other hardware resources can be separated

http://dx.doi.org/10.1016/j.future.2015.05.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.05.008&domain=pdf
mailto:weihongxing@buaa.edu.cn
mailto:guanyxxxy@263.net
mailto:tan@utk.edu
mailto:cszlshao@comp.polyu.edu.hk
http://dx.doi.org/10.1016/j.future.2015.05.008

172 H. Wei et al. / Future Generation Computer Systems 56 (2016) 171-178

roscoreIroscppIroslangIStdmsg
. Boost XML . .

Lib: | . Lib)| rPCPP Liber+
[Linux OS J

Fig. 1. The software architecture of ROS.

and isolated to support real-time and non-real-time ROS tasks. Sec-
ond, we also need to provide effective and efficient communication
mechanisms between real-time and non-real-time tasks.

This paper for the first time presents a real-time ROS
architecture called RT-ROS on multi-core processors. RT-ROS
provides an integrated real-time/non-real-time task execution
environment so real-time and non-real-time ROS nodes can be
separately run on a real-time OS and Linux, respectively, with
different processor cores. In such a way, real-time tasks can be
supported by real-time ROS nodes on a real-time OS, while non-
real-time ROS nodes on Linux can provide other functions of ROS.
In RT-ROS, we develop a hybrid OS platform that can support the
execution of real-time and non-real-time OSes. RT-ROS provides a
mechanism in its hybrid OS so processor cores and other hardware
resources such as interrupts and devices are divided and isolated,
by which real-time ROS tasks on a real-time OS and non-real-time
ROS tasks on a general-purpose OS can be run separately without
interfering each other. Furthermore, in RT-ROS, we develop an
efficient communication mechanism between real-time and non-
real-time OSes.

We have implemented RT-ROS on an Intel dual-core processor.
Nuttx [5], an open source real-time OS, is chosen as the real-time
platform, and Linux is used as the general-purpose OS. We further
implement the RT-ROS system in the industrial controller of a 6-
DOF modular manipulator. The experimental results show that RT-
ROS can effectively provide real-time support for the ROS platform
with high performance by exploring the multi-core architecture.

The remainder of this paper is organized as follows. Section 2
introduces the background. Sections 3 and 4 present the design and
implementation of RT-ROS, respectively. Evaluation is presented
is Section 5. Section 6 introduces the related work. Finally, the
conclusions are drawn in Section 7.

2. Background

In this section, we provide the background. We first introduce
ROS and then Nuttx that is used as the real-time OS in the
implementation of RT-ROS.

2.1. ROS

ROS (Robot Operating System) is an open-source and reusable
software platform providing libraries, tools and conventions that
can help to create high-performance robot applications quickly
and easily. It provides standardized interfaces for hardware
control, tools for creating, debugging, distributing and running
procedures, and libraries for developing programs. So far, about
500 packages have been made available in ROS from approximately
30 institutions [6-8].

ROS is a modular software platform installed on the Linux oper-
ating system. It contains a number of software modules encapsu-
lated as nodes, including the master node and the functional nodes.
Fig. 1 gives the software architecture of ROS, which consists of li-
braries, packages and nodes installed on Linux. Such a modular ar-
chitecture supports distributed network communication. Like the

Robot
Controller

Computer A
Linux

WiFi Router
Fig. 2. The remote control model of ROS.

OSI Model ROS Model

Application ROS ROS
Masti Node

XML-RPC
‘ Transport ‘ ‘ TCP H UDP ‘
‘ Network ‘ ‘ 1P ‘
Data Link
VNET | | Ethernet

Fig. 3. The communication model of ROS and its corresponding OSI model.

router in a LAN, the master node administrates and monitors the
running of the functional nodes and their peer-to-peer communi-
cations.

Fig. 2 shows a typical remote control model of ROS. The ROS
nodes in a robot are connected to these in the remote computer
through the WIFI router. The communications among nodes are
realized by XML/RPC (Remote Procedure Call) based on the TCP/IP
protocol.

Fig. 3 illustrates the ROS communication model and its
corresponding OSI model. It can be seen that an application layer
based on the XML-RPC HTTP protocol is constructed on the TCP/IP
architecture. Therefore, messages transmitted among nodes are
not data packages but webpage files based on the http protocol.

2.2. Nuttx

In order to construct the hybrid operating system, we need a
portable real-time operating system architecture. There are many
real-time operating systems such as VxWorks, QNX, eCOS, and
ucOS-II. Considering the portability of ROS, we choose Nuttx as our
real-time OS platform.

Nuttx is an open-source embedded real time operating system
(RTOS) developed by Gregory Nutt [5]. Nuttx supports the Posix
and ANSI standards, and can be applied in microcontrollers from
8-bit to 32-bit. In addition, by adopting the standard APIs from
Unix and other common RTOSes such as VxWorks, Nuttx also
provides some functionalities not available under the Posix and
ANSI standards. Compared with other real-time operating systems
such as VxWorks, Windows CE and uC/OS-II, Nuttx has the
following advantages:

(1) Various system services. Nuttx provides a number of system
supports such as the UIP protocol stack, networking, device
drivers and virtue file system, which are useful for application
development.

(2) Small footprint. Nuttx only requires very little memory. For
example, 4 MB memory is enough to run Nuttx.

(3) Easy extension. It is convenient to extend Nuttx to new
processor architectures such as SoC architectures. This makes it
possible to port real-time ROS nodes among different multi-core
processors.

Download English Version:

https://daneshyari.com/en/article/424880

Download Persian Version:

https://daneshyari.com/article/424880

Daneshyari.com

https://daneshyari.com/en/article/424880
https://daneshyari.com/article/424880
https://daneshyari.com

