
Future Generation Computer Systems 56 (2016) 179–191

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Energy-efficient scheduling of real-time tasks with shared resources✩

Jun Wu
Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900, Taiwan

h i g h l i g h t s

• This paper explores the DVS scheduling of real-time tasks with shared resources.
• An SRP-based two-speed approach is proposed to work with EDF and RM algorithms.
• The execution speeds of tasks are adjusted dynamically by a blocking-aware method.
• The energy consumption can be reduced without violating tasks’ timing constraints.

a r t i c l e i n f o

Article history:
Received 13 January 2015
Received in revised form
24 April 2015
Accepted 24 May 2015
Available online 4 June 2015

Keywords:
Real-time systems
Dynamic voltage scaling
Task scheduling
Task synchronization
Resource sharing

a b s t r a c t

This paper explores the energy-efficient scheduling of real-time tasks on a non-ideal DVS processor
in the presence of resource sharing. We assume that tasks are periodic, preemptive and may access
to shared resources. When dynamic-priority and fixed-priority scheduling are considered, we use the
earliest deadline first (EDF) algorithm and the rate monotonic (RM) algorithm to schedule the given set of
tasks. Based on the stack resource policy (SRP), we propose an approach, called blocking-aware two-speed
(BATS) algorithm, to synchronize the tasks with shared resources and to calculate appropriate execution
speeds so that the shared resources can be accessed in a mutual exclusive manner and the energy
consumption can be reduced. Particularly, BATS uses a static low speed to execute tasks initially, and then
it switches to a high speed dynamically whenever a task blocks a higher priority task. More specifically,
the processor runs at the high speed from the beginning of the blocking until the deadline of the blocked
task or the processor becomes idle. In order to guarantee that the deadlines of tasks aremet, the static low
speed and the dynamic high speeds are derived based on the theoretical analysis of the schedulability of
tasks. Compared with existing work, BATS achieves more energy saving because its dynamic high speeds
are lower than that of existing work and the processor has less chance to execute tasks at the high speeds.
The schedulability analysis and the properties of our proposed BATS are provided in this paper. We also
evaluated the capabilities of BATS by a series of experiments, forwhichwe have some encouraging results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, most modern processors are deployed with dy-
namic voltage scaling (DVS) technique in order to obtain a bet-
ter energy efficiency. When a DVS processor is not fully utilized,
we can slowdown the execution speeds of tasks such that the
overall energy consumption can be reduced. However, this strat-
egy will cause an impact on performance due to the late com-
pletion of tasks. Since the late completion of a real-time task

✩ An earlier version of this paper was presented at the IEEE 11th International
Conference on Embedded Software and Systems (ICESS). The results have been
extended in exploring the schedulability analysis as well as the calculation of the
execution speeds for dynamic-priority and fixed-priority real-time tasks. More
examples, figures, experimental results, and proofs are included in this extension.

E-mail address: junwu@mail.nptu.edu.tw.

is allowed as long as the task meets its deadline, it provides a
strong driving force in energy-efficient real-time task schedul-
ing. In the past decades, many excellent approaches have been
proposed for energy-efficient real-time task scheduling on DVS
processors (comprehensive surveys can be found in [1,2]). Most
previous approaches assume that tasks are independent, however,
relatively little work has been done when tasks are dependent
which is common in many real-life applications.

When dependent real-time tasks are considered, shared re-
sources have to be accessed in a mutually exclusive manner. Ex-
isting approaches mainly focus on tasks with non-preemptible
critical sections [3–6]. In particular, Zhang and Chanson [3] have
proposed a two-speed strategy (TSS) based approach, called dual
speed (DS) algorithm, to execute tasks at the low speed initially and
then it switches to the high speed as soon as the tasks are blocked.
Later, some TSS-based approaches (e.g., [4–6]) have extended from

http://dx.doi.org/10.1016/j.future.2015.05.012
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.05.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.05.012&domain=pdf
mailto:junwu@mail.nptu.edu.tw
http://dx.doi.org/10.1016/j.future.2015.05.012


180 J. Wu / Future Generation Computer Systems 56 (2016) 179–191

this direction. However, making critical sections non-preemptible
is not desirable because the blocking time and the number of pri-
ority inversions might be increased, and it might result in a higher
execution speed than it required for task synchronization.

In this paper,we assume that tasks are preemptible both of criti-
cal sections and non-critical sections. An approach, called blocking-
aware two-speed (BATS) algorithm, is proposed to schedule a set
of real-time tasks with shared resources on a non-ideal DVS pro-
cessor. We use the well-known earliest deadline first (EDF) al-
gorithm [7] and the rate monotonic (RM) algorithm [7] as the
scheduling policies for dynamic-priority and fixed-priority tasks,
respectively. Since dependent real-time tasks are considered, BATS
uses the well-known stack resource policy (SRP) [8] to synchronize
the tasks’ accesses to shared resources. Under BATS, a task will be
executed at a static low speed (calculated off-line) if blocking does
not happen, and the processor speed will switch to a high speed
(calculated on-line) whenever a blocking occurs. The processor op-
erates at a high speed from the beginning of the blocking until the
deadline of the blocked task or the processor becomes idle. Note
that BATS calculates the execution speeds based on the theoreti-
cal analysis of the schedulability of tasks such that the energy con-
sumption can be reduced without violating the timing constraints
of tasks.

The major contributions of this research are two-fold: (1) We
explore the DVS scheduling problem under a more realistic task
model. Particularly, we assume that tasks are periodic, preemptive
(both of critical sections and non-critical sections), and dependent
due to concurrent access to shared resources. Furthermore, we
consider both of the dynamic-priority and fixed-priority real-time
tasks; (2) We explore the schedulability of tasks when they are
scheduled by BATS on a non-ideal DVS processor. Related issues
of how to derive proper processor speeds and when to change the
processor speed between the low and the high speeds are also
discussed. Furthermore, the dynamically derived high speeds of
BATS are lower than that of the existing work, and the processor
has less chance to execute tasks at a high speed. As a result, BATS
achieves more energy saving.

The rest of this paper is organized as follows. Section 2
summaries related work in the area of DVS scheduling of real-
time tasks. Section 3 defines the system model and the problem.
Section 4 proposes BATS with properties and schedulability
analysis. Section 5 reports the performance evaluation. Section 6
is the conclusion.

2. Related work

In the literature, there is a simple strategy for scheduling of
real-time tasks with shared resources, which uses two speeds, i.e.,
the low speed and the high speed, for task executions. In general,
it executes tasks at the low speed initially and it switches to the
high speed as soon as a blocking occurs. As a result, tasks can
be scheduled without violating their timing constraints and the
energy consumption could be reduced. Such a strategy is called
two-speed strategy (TSS), and it is common for scheduling of real-
time tasks with shared resources, e.g., [3–6,9–13].

By assuming that critical sections are non-preemptible, some
TSS-based approaches have been proposed for real-time tasks.
Zhang and Chanson [3] first proposed a TSS-based scheduling algo-
rithm for dynamic-priority tasks, called dual speed (DS) algorithm.
When tasks are scheduled by the well-known earliest deadline first
(EDF) [7] algorithm, DS calculates the low speed and the high speed
based on the sufficient schedulability condition of EDF. Hence, the
timing constraints of tasks can be met while energy consumption
is reduced. In particular, DS assigns the low speed for executing
tasks when they arrive, and the processor speed switches to the
high speed as soon as the tasks are blocked. A time interval that

the processor is executing at the high speed is called high speed in-
terval. Under DS, a high speed interval starts from the beginning of
a blocking and ends at the deadline of the blocking task. To achieve
further energy saving, Lee et al. [4] explored the sameproblemwith
a tighter schedulability analysis, and proposed a multi-speed ex-
tension of DS, called multi-speed (MS) algorithm. In particular, MS
assigns different high speeds for each task by considering different
blocking scenarios of task instances. MS reduces more energy con-
sumption than that of DS, and the schedulability of the tasks is still
guaranteed.

Later, Elewi et al. proposed two extensions of DS andMS, called
enhanced dual speed (EDS) algorithm [5] and improved multi-speed
(IMS) algorithm [6]. EDS and IMS obtain more energy saving by
shortening the high speed interval, i.e., they end a high speed
interval at the deadline of the blocked task (instead of the deadline
of the blocking task) or the earliest time that the processor
becomes idle. When critical sections are preemptible, EDS and IMS
canworkwith SRP and dynamic priority ceiling protocol (DPCP) [14],
respectively, by switching the processor speed to the high speed
whenever a critical section is preempted or a blocking occurs.
Unfortunately, EDS and IMS are heuristic algorithms and they does
not guarantee the schedulability of the tasks.

When critical sections are considered to be preemptible, Je-
jurikar and Gupta [9] proposed a TSS-based scheduling algo-
rithm for fixed-priority tasks, called critical section maximum speed
(CSMS), based on the rate monotonic (RM) algorithm [7] and the
priority ceiling protocol (PCP) [15]. CSMS always executes tasks
at a low speed and then it switches to the maximum processor
speed when tasks being executed in a critical section. Jejurikar and
Gupta [16] also proposed an approach for tasks with preemptible
critical sections, called uniform slowdown with frequency inheri-
tance (USFI), to compute a static speed, called slowdown factor, for
each task based on the schedulability analysis of tasks with their
worst-case blocking time. Under USFI, a blocking task inherits the
maximum slowdown factor of the blocked tasks. However, the en-
ergy consumption under CSMS and USFI are much higher than
that under DS and MS. To achieve more energy saving, researchers
also proposed TSS-based algorithms with the slack time stealing
method, such as [12]. Recently, Wu and Ke [11] also proposed a
more energy-efficient TSS-based approach by considering that crit-
ical sections are abortable.

3. Systemmodel and problem definitions

3.1. DVS processor models

Nowadays, many modern processors support variable voltage
and frequency levels, such as the Intel Core M 5Y70, Intel Core
i7 4790K, AMD A8 6410 and Qualcomm Snapdragon 800, such a
processor is capable of dynamic voltage scaling and its speed is
proportional to the supply voltage. There are two types of DVS pro-
cessors have been considered in the literature: ideal and non-ideal.
An ideal DVS processor can operate at any speed in the range from
the minimum to the maximum available speed, while a non-ideal
DVS processor has only discrete speeds. Nowadays, most DVS pro-
cessors are non-ideal while the ideal DVS processors are only for
theoretical analysis purpose. In this paper, we assume that a set of
real-time tasks are scheduled on a non-ideal DVS processor which
supports a set of K discrete speeds S = {s1, s2, . . . , sK }, where
s1 < s2 < · · · < sK . Let smin and smax denote the minimum and
the maximum speeds (i.e., smin = s1 and smax = sK ), respectively.
Without loss of generality, we assume the smax is 1 and all other
speeds are normalized with respect to the maximum speed smax.

In the literature (such as [17,18,16,19,3,5,6,20]), the power con-
sumption of a DVS processor is modeled as a function of its opera-
tion speed. Let PC(s) be the power consumption function, where



Download English Version:

https://daneshyari.com/en/article/424881

Download Persian Version:

https://daneshyari.com/article/424881

Daneshyari.com

https://daneshyari.com/en/article/424881
https://daneshyari.com/article/424881
https://daneshyari.com

