
Future Generation Computer Systems 56 (2016) 229–237

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient consolidation-aware VCPU scheduling on multicore
virtualization platform
Bei Wang a, Yuxia Cheng a, Wenzhi Chen a, Qinming He a, Yang Xiang a,b,∗,
Mohammad Mehedi Hassan c, Abdulhameed Alelaiwi c
a College of Computer Science and Technology, Zhejiang University, Hangzhou, China
b School of Information Technology, Deakin University, Melbourne, Australia
c College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

h i g h l i g h t s

• We propose an efficient consolidation-aware vCPU (CVS) scheduling scheme.
• The CVS scheduling scheme adaptively selects three vCPU scheduling algorithms.
• The CVS scheme can effectively improve virtual machine performance.
• The CVS scheme works in different consolidation scenarios.

a r t i c l e i n f o

Article history:
Received 20 January 2015
Received in revised form
28 July 2015
Accepted 16 August 2015
Available online 28 August 2015

Keywords:
Multicore
Virtualization
Lock holder preemption
vCPU scheduling
Consolidation

a b s t r a c t

Multicore processors are widely used in today’s computer systems. Multicore virtualization technology
provides an elastic solution to more efficiently utilize the multicore system. However, the Lock Holder
Preemption (LHP) problem in the virtualized multicore systems causes significant CPU cycles wastes,
which hurt virtual machine (VM) performance and reduces response latency. The system consolidates
more VMs, the LHP problem becomes worse. In this paper, we propose an efficient consolidation-aware
vCPU (CVS) scheduling scheme on multicore virtualization platform. Based on vCPU over-commitment
rate, the CVS scheduling scheme adaptively selects one algorithm among three vCPU scheduling
algorithms: co-scheduling, yield-to-head, and yield-to-tail based on the vCPU over-commitment rate
because the actions of vCPU scheduling are split into many single steps such as scheduling vCPUs
simultaneously or inserting one vCPU into the run-queue from the head or tail. The CVS scheme can
effectively improve VM performance in the low, middle, and high VM consolidation scenarios. Using
real-life parallel benchmarks, our experimental results show that the proposed CVS scheme improves
the overall system performance while the optimization overhead remains low.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multicore processors are commonly deployed in computer
systems from high-end servers to power efficient embedded
devices.With the increasing number of processing cores integrated
into the system, how to efficiently utilize the multicore processing

∗ Corresponding author at: School of Information Technology, Deakin University,
Melbourne, Australia.

E-mail addresses:wangbei@zju.edu.cn (B. Wang), rainytech@zju.edu.cn
(Y. Cheng), chenwz@zju.edu.cn (W. Chen), hqm@zju.edu.cn (Q. He),
yang.xiang@deakin.edu.au (Y. Xiang), mmhassan@ksu.edu.sa (M.M. Hassan),
aalelaiwi@ksu.edu.sa (A. Alelaiwi).

power becomes a big challenge. To more flexibly utilize physical
resources, virtualization technology is widely used in today’s
cloud computing environment. Virtualization technology enables
multiple virtual machines (VMs) concurrently run in one physical
machine, which provides an elastic resource provisioning method.

However, multiple VMs consolidated into the same physical
machine will contend for shared CPU resources [1]. In a typical
VM consolidation scenario, one physical core usually has multi-
ple virtual CPUs (vCPUs) running on it (named vCPU overcommit-
ment) [2]. The virtual machine monitor (VMM), which provides a
virtual abstraction of machine hardware for each guest operating
system (OS), schedules the vCPUs based on their time slice and
priority [3]. The VMM has little awareness of the code being ex-
ecuted inside each vCPU [4]. Therefore, the vCPUs that are holding

http://dx.doi.org/10.1016/j.future.2015.08.007
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.08.007
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.08.007&domain=pdf
mailto:wangbei@zju.edu.cn
mailto:rainytech@zju.edu.cn
mailto:chenwz@zju.edu.cn
mailto:hqm@zju.edu.cn
mailto:yang.xiang@deakin.edu.au
mailto:mmhassan@ksu.edu.sa
mailto:aalelaiwi@ksu.edu.sa
http://dx.doi.org/10.1016/j.future.2015.08.007


230 B. Wang et al. / Future Generation Computer Systems 56 (2016) 229–237

spinlocks may be preempted [5] by other vCPUs due to the VMM’s
vCPU scheduling. The vCPUs that arewaiting for the spinlocks have
to spin for a much longer time when the vCPUs holding the locks
are preempted. This is known as lock holder preemption (LHP)
problem [6–9], which decreases VM performance and reduces sys-
tem scalability.

In the non-virtualized environment, the LHP problem can
be avoided [10,11] by preventing the lock holder from being
preempted until the lock holder releases the lock. The spinlock is
designed to wait for a very short time and is used in the situations
where context switches to yield CPU time slices are deemed as
more costly than spinning. The lock holder can be easily detected
by the native OS kernel. But when the OS is running inside a VM,
the VMM cannot easily figure out whether the vCPU is holding the
spinlock.

To address the LHP problem, researchers have proposed mul-
tiple solutions. The VM co-scheduling technique [5,12] was pro-
posed to simultaneously co-schedule all or part of the vCPUs in
one VM onto physical cores to avoid the LHP problem. How-
ever, co-scheduling has some weaknesses [13,24], such as CPU
utility fragmentation [14,26] and increased system latency. Para-
virtualization technique provides another solution to address the
LHP problem by modifying the spinlock primitives in the guest OS
to cooperate with the underlying VMM [4,15,16]. In this way, the
VMM can detect the lock holder and avoid preempting the vCPU
that are holding the spinlock. But modifying the primitive spinlock
cannot be easily applied in those proprietary OSes such as Win-
dows and Mac OS X [17].

The precise lock holder detection in the full virtualization
environment is currently not available [1,8]. An alternative
hardware assisted technology was introduced to approximately
detect the lock waiter, such as Intel PAUSE Loop Exiting (PLE) [18]
and AMDPAUSE Filter (PF) [19]. The PLE/PFmechanism is designed
to detect the guest OS execution of the PAUSE instruction that
is used in the spin loop code. By detecting the potential lock
waiter, the VMM can then make the lock waiter vCPU yield its
CPU cycles and donate them for other vCPUs [17]. Therefore, the
overall system throughput can be improved. However, the vCPU
yield policy can lead to unfairness for the donating vCPUs and
impact their response latency [7,8].

In this paper,we propose an efficient consolidation-aware vCPU
scheduling (CVS) scheme that considers different VM consolida-
tion scenarios. The CVS scheme takes advantages of the low over-
head hardware assisted PLE mechanism to detect lock waiter
vCPUs. Based on vCPU over-commitment rate, the CVS scheduling
selects one algorithm among three vCPU scheduling algorithms:
co-scheduling, yield-to-head, and yield-to-tail. Themain contribu-
tions are described as follows:

(1) We evaluate three vCPU scheduling algorithms in the multi-
core virtualized system under different VM consolidation sce-
narios. We observe that different scheduling algorithms have
performance advantages and disadvantages under different
vCPU over-commitment rate settings.We analyze the behavior
of three vCPU scheduling algorithms and find themost suitable
algorithm in a certain VM consolidation scenario.

(2) After analyzing the characteristics of three vCPU scheduling
algorithms, we propose an efficient consolidation-aware vCPU
scheduling (CVS) scheme that adaptively selects the most
suitable vCPU scheduling algorithm online based on the vCPU
over-commitment rate. The CVS scheme dynamically changes
vCPUs scheduling strategies according to CPU run queue status
and the positions of the lock waiter vCPU and the lock holder
vCPU. The CVS can more effectively address the LHP problem
and improve VM performance than the single policy vCPU
scheduling algorithms.

Table 1
The properties of three algorithms.

Algorithm YTT YTH Co-sched

Overhead Low Low High
Performance Low Mid High
Degradation Low Mid High

(3) We extensively evaluate the proposed CVS scheme in the
multicore virtualized platform. We run the real-life parallel
benchmarks in the multicore VMs. The evaluation results
demonstrate that our proposed CVS scheme can effectively
improve the overall VM performance, and the optimization
overhead remains low.

The rest of this paper is organized as follows. Section 2
describes themotivation of this paper and shows the experimental
observations. Section 3 presents our proposed consolidation-
aware vCPU scheduling scheme in detail and describes its
implementation in the Xen virtualized platform. Section 4 shows
the evaluation results. Finally, we conclude this paper in Section 5.

2. Motivation

The lock holder preemption (LHP) problem in the virtualized
environment can be mitigated via three different vCPU scheduling
algorithms: co-scheduling, yield-to-head (YTH), and yield-to-tail
(YTT), because the actions of vCPU scheduling are split into many
single steps such as scheduling vCPUs simultaneously or inserting
one vCPU into the run-queue from the head or tail.

The co-scheduling algorithm, shown in Fig. 1(a), schedules
all vCPUs of a VM synchronously on physical cores. The YTH
algorithm detects the lock waiter vCPU and inserts it to the head
of the corresponding CPU run queue. The YTH algorithm can be
illustrated with Fig. 1(b). The lock waiter vCPU yields its CPU time
slice to other vCPUs andwaits in the head of CPU run queue for the
next round. The YTT algorithm is the default scheduling methods
for Xen Hypervisor. As shown in Fig. 1(c), YTT detects the lock
waiter vCPU and inserts it to the tail of the corresponding CPU run
queue. In the YTT algorithm, the lock waiter vCPU also yields its
CPU time slice to other vCPUs butwaits in the tail of CPU run queue
for the next round.

From the analysis above, we fill Table 1 with the properties
of three algorithms. Table 1 shows that three algorithms have
their own advantages and disadvantages. To study the perfor-
mance characteristics of these algorithms, we implemented three
algorithms in the Xen hypervisor and evaluated their performance
using parallel benchmarks. We run 4 VM guests with 3 GB simul-
taneously and concurrently using the Kernbench [20] as the work-
load. Each VM guest has the same number of vCPUs. We gradually
increase the number of vCPUs in each guest to increase the prob-
ability of the LHP problem. Since only the number of CPUs or VMs
could not reflect the contention for CPU resources between VMs,
we consider the vCPU over-commitment rate (VOR) to represent
the current system’s VM configurations. VOR is calculated as the
following equation:

VOR =

n
i=1

VN(vmi)

Total Number of pCPUs
, (1)

where VN(vmi) represents the number of vCPUs in the ith VM. For
example, if the systemhas 8 physical CPUs (pCPUs) and 4 VMswith
each configured with 2 vCPUs run on the system, then the VOR
value equals to (2 + 2 + 2 + 2)/8. The higher the value of VOR,
the higher probability the LHP problem occurs.

Fig. 2 shows the total execution time of the Kernbench running
inside 4 VMs under three vCPU scheduling algorithms: YTT, YTH,



Download English Version:

https://daneshyari.com/en/article/424886

Download Persian Version:

https://daneshyari.com/article/424886

Daneshyari.com

https://daneshyari.com/en/article/424886
https://daneshyari.com/article/424886
https://daneshyari.com

