
Future Generation Computer Systems 56 (2016) 247–261

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Dynamic core allocation for energy efficient video decoding in
homogeneous and heterogeneous multicore architectures
Rajesh Kumar Pal ∗, Ierum Shanaya, Kolin Paul, Sanjiva Prasad
Indian Institute of Technology Delhi, India

h i g h l i g h t s

• Present dynamic core allocation for video decoding on homogeneous multicores.
• Present an energy-efficient video decoding method for heterogeneous multicores.
• Show energy savings with dynamic core allocation.
• Analyze factors influencing frame decoding time.

a r t i c l e i n f o

Article history:
Received 15 January 2015
Received in revised form
23 August 2015
Accepted 16 September 2015
Available online 28 September 2015

Keywords:
Core allocation
H.264 video decoding
Embedded system
Heterogeneous multicores

a b s t r a c t

This paper describes two dynamic core allocation techniques for video decoding on homogeneous and
heterogeneous embedded multicore platforms with the objective of reducing energy consumption while
guaranteeing performance. While decoding a frame, the scheme measures ‘‘slack’’ and ‘‘overshoot’’ over
the budgeted decode time and amortizes across the neighboring frames to achieve overall performance,
compensating for the overshoot with the slack time. It allocates, on a per-frame basis, an appropriate
number and types of cores for decoding to guarantee performance, while saving energy by using clock
gating to switch off unused cores. Using the Sniper simulator to evaluate the implementation of the
scheme on a modern embedded processor, we get an energy saving of 6%–61% while strictly adhering
to the required performance of 75 fps on homogeneous multicore architectures. We receive an energy
saving of 2%–46% while meeting the performance of 25 fps on heterogeneous multicore architectures.
Thus, we show that substantial energy savings can be achieved in video decoding by employing dynamic
core allocation, compared with the default strategy of allocating as many cores as available.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary video decoders for real-time, large and detailed
digital movies/videos on embedded platforms require high CPU
performance. H.264 [1] is one of the best video codecs in terms
of compression and quality. Its compression efficiency is at least
twice that of the earlier codecs such as MPEG-2, and MPEG-
1 [2]. The decoding process of H.264 produces video with per-
ceptibly high quality. However these advanced features come
at a cost of increased computational requirements: the video
encoders/decoders exploit advanced instruction sets (MMX/SSE/
SSE2), instruction-level parallelism, and parallelism provided by
modern processors (multi/manycores).Multi-threaded implemen-
tations of H.264 codec take advantage of multiple cores provided

∗ Corresponding author.
E-mail addresses: rkpal@cse.iitd.ac.in (R.K. Pal), ierum@cse.iitd.ac.in

(I. Shanaya), kolin@cse.iitd.ac.in (K. Paul), sanjiva@cse.iitd.ac.in (S. Prasad).

by embedded processors such as ARM Cortex A15 and Intel Silver-
mont.

While playing video on devices such as mobiles and tablets,
users expect high video quality aswell as long battery life. These are
conflicting requirements: high quality of video means better reso-
lution and higher frame rates, which need more computation and
thus more energy. The general approach in the video decoders is
to utilize as many cores as available on the multicore platform. For
example, in libavcodec, the leading audio/video codec library, there
is a flag threads in AVCodecContext; when set to auto this lets the
decoder detect the number of available cores and spawn as many
threads. Employing all available cores definitely helps to meet the
performance, albeit at the cost of higher energy consumption. We
show in this work that with intelligent core allocation at the frame
level, performance can be guaranteed with significantly lower en-
ergy consumption. The proposed core allocation methodology can
be employed easily on all embedded multicore platforms to en-
hance battery life while providing the desired performance.

http://dx.doi.org/10.1016/j.future.2015.09.018
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.09.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.018&domain=pdf
mailto:rkpal@cse.iitd.ac.in
mailto:ierum@cse.iitd.ac.in
mailto:kolin@cse.iitd.ac.in
mailto:sanjiva@cse.iitd.ac.in
http://dx.doi.org/10.1016/j.future.2015.09.018


248 R.K. Pal et al. / Future Generation Computer Systems 56 (2016) 247–261

Fig. 1. H.264 decoder.

Soft real-time applications such as video encoders/decoders
and speech/image recognition have soft deadline constraints.
These applications can gracefully accommodate occasional dead-
line misses. For example, if the video decoder can decode and ren-
der the required number of frames (more than 24 fps) within the
deadline of 1 s in spite of few frames locally missing their indi-
vidual deadline, an overall perceptibly acceptable quality of video
is achieved. From the performance perspective, these applications
may miss their local deadlines occasionally but must meet the
global deadline. Most frames are decoded before their local dead-
lines. Thus one can amortize the decode times across frames and
compensate for the occasional local deadlinemisseswhilemeeting
the global deadline. The technique explored in this paper is based
on this observation. Isovic et al. [3] used an alternative strategy of
frame skipping to meet the global deadline.

Embedded processors for multimedia communication devices
often adopt heterogeneous multi-core architecture in order to
achieve good power efficiency for executing mixed control/data
processing tasks. When playing a video, the processing resources
are responsible for more than 60% of the power consumption
[4,5]. This leads to a drastic decrease in mobile devices autonomy
as lithium battery technologies are not evolving fast enough to ab-
sorb the ever-growing energy requirements of such mobile archi-
tectures [6]. Due to the limitation of themicroprocessor fabrication
technologies, it is expected that only 20% of the energy saving will
be achieved in the next few years [7]. Thus, one should consider
the optimization of overall system including the hardware and the
software platforms to cope with the energy saving issue. To take
full advantage of these multi-level energy saving opportunities,
mobile systems designers should deal with the increasing system
complexity and heterogeneity. Various approaches like dynamic
task scheduling, heterogeneous architectures, hybrid parallel and
hybrid pipeline schemes, frame level parallelism are used for ob-
taining the performance and energy efficiency in video decoding.

Most prior work [8–10] has used DVS/DVFS to trade-off
between energy and performance. To the best of our knowledge, ours
is the first use of slack time to determine when and how many cores
to switch on dynamically at runtime to save energy while meeting
performance constraints. When decoding a frame, we measure
the slack and overshoot times over a budgeted decode time and
use the slack time to compensate for the overshoot. We assign
a suitable number of cores on a per-frame basis to guarantee
performance in homogeneousmulticore architectures. The unused
cores are shut off using clock/power gating, thus saving energy. For
heterogeneous multicore architectures, we assign suitable type of
cores in required numbers on a per-frame basis to preserve energy
while guaranteeing performance. We find that our schemes are
profitable for embedded platforms as significant benefits can be
achieved in terms of energy, without changing the hardware or
software, merely by controlling the core allocation dynamically.

This paper makes four major contributions:

• We show that the default strategy of allocating asmany cores as
available on the platform leads to substantial energy wastage.

• We present a simple core allocation methodology for H.264
video decoding on homogeneous multicore platforms to meet
the performance while conserving energy.

• We present a dynamic core allocation methodology for video
decoding on heterogeneous multicore architectures that saves
energy while meeting performance.

• We identify and analyze the factors that influence frame
decoding time on multicore architectures.

In the next section we overview the default core allocation and
then present the dynamic core allocation strategy that conserves
energy while meeting the required performance. In Section 3
we describe our experimental methodology and details of test
video sequences. Section 4 provides an insight into the factors
influencing framedecoding time. Section 5 presents the results and
its analysis. Section 6 discusses related work in this area. Section 7
concludes the paper with directions for extending this work.

2. Core Allocation for H.264 Decoder

In this section, we present an overview of the core allocation
in H.264 video decoder and thereafter propose dynamic core
allocation.

2.1. Default core allocation

The threaded implementation of H.264 video decoders is done
in the following two fundamentally different ways.

• Functional Decomposition: As shown in Fig. 1 each frame gets de-
coded after passing through several functional stages: inverse
transforms and quantization, intra prediction, motion compen-
sation and deblocking filter. Each function is performed by a
separate thread. This implementation has limited scalability on
multicore architectures as to increase the number of threads
we must partition a function into two or more threads. Due
to interdependence and tight coupling between sub-functions
of a function, division becomes difficult. Moreover unbalanced
workload to the threads can cause thread waiting and synchro-
nization delays. These limitations hamper utilization of large
number of cores for such implementations of video decoders.

• Data Domain Decomposition: The hierarchy of data domain
decomposition in H.264 is shown in Fig. 2. A H.264 video
consists of many groups of pictures (GOP). Each GOP is made
up of a number of frames. Each frame consists of slices. A slice
is an independent and self-contained encoding unit. A slice is
further divided into macroblocks which are 16 × 16 pixels.
Motion estimation and entropy decoding is done at macroblock
level. Depending on the required scalability, threads can be
created at different levels of this hierarchy. Aswemove towards
lower levels of the hierarchy, more threads can be created.
One significant advantage of data domain decomposition over
functional decomposition is that each thread processes the
same operation on different data blocks, each having the
same dimensions. The scalability, thread homogeneity and
even distribution of workload amongst the threads make this
type of implementation suitable for exploiting large number of
cores. Considering these factors, we decided on a data domain
decomposition with a multi-threaded implementation of the
H.264 decoder.



Download	English	Version:

https://daneshyari.com/en/article/424888

Download	Persian	Version:

https://daneshyari.com/article/424888

Daneshyari.com

https://daneshyari.com/en/article/424888
https://daneshyari.com/article/424888
https://daneshyari.com/

