Future Generation Computer Systems 25 (2009) 199-212

Contents lists available at ScienceDirect = s
Future Generation Computer Systems —
journal homepage: www.elsevier.com/locate/fgcs —

Workflow-based resource allocation to optimize overall performance of

composite services”

BangYu Wu, Chi-Hung Chi*, Zhe Chen, Ming Gu, JiaGuang Sun

School of Software, Tsinghua University, Beijing, 100084, China
Key Laboratory for Information System Security, Ministry of Education of China, Beijing, 100084, China

ARTICLE INFO

ABSTRACT

Article history:

Received 28 January 2008
Received in revised form

2 June 2008

Accepted 4 June 2008
Available online 25 June 2008

Keywords:

Service oriented architecture
Performance

Composite service

Resource allocation

In software service provision, the overall performance of a composite service is often the ultimate focus
of concern rather than those of its individual components. This opens new opportunities for resource
allocation because with its service workflow definition, more accurate prediction of its individual
components’ dynamic workload is possible, thus resulting in better utilization of resources. In this paper,
we propose to improve resource allocation through tracing and prediction of workload dynamics of
component services as requests traverse and pipeline through the workflow. Factors affecting service
workload such as service time, transition probability, replication overhead for additional service etc. as
well as the uncertainty in request arrival time are all taken into consideration in our model. The goal
is to maximize the number of requests completed under the constraints of limited available resources.
Experimental study on TPC-W and synthetic workflow shows that our dynamic workflow-based resource
allocation scheme is much more efficient in enhancing the overall performance of composite services

than current resource allocation schemes do.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Composition is one key service design principle under SOA (Ser-
vice Oriented Architecture). With composition, new complicated
composite services can be formed by aggregating component ser-
vices together in a workflow. Due to its importance, numerous re-
search efforts have been spent on effective service matching and
selection, trying to find the “best” component services available in
the registry for composition [1-6,25,28]. With the argument that
“service without quality is not a true service”, increasing attention
is now being given to the non-functional QoS aspects of services.
One big challenge now is on how to allocate minimum resource to
individual services within a workflow so that the overall agreed (or
pre-defined) service quality can be provided at runtime. Consider
the situation in Fig. 1, in which the workflow for a given composite
service is defined, achieving or failing the pre-defined agreement
of the overall service will result in different business values.

The goal of resource allocation for services is for all services
in the workflow to meet their respective performance targets.

A preliminary version of this paper is published in the 2007 IEEE Service
Computing Conference. Substantial modification of the content, including the
algorithm and experimental results, is made.

* Corresponding author. Tel.: +86 10 62773368.

E-mail addresses: wby03@mails.tsinghua.edu.cn (B. Wu),
chichihung@mail.tsinghua.edu.cn (C.-H. Chi).

0167-739X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.06.003

However, due to the dynamic nature of service invocation, resource
allocation and QoS provisioning of services are much more difficult
than that of traditional software/servers environment. This
dynamism comes from three main sources: (i) non-deterministic
arrival of service requests, (ii) non-constant demand for resource
capacity of requests (due to different inputs and service level
agreements (SLAs)), and (iii) execution uncertainty within a service
workflow (e.g. parallel exclusive operations defined in Section 3),
which results in only some component services inside to be used.
All these dynamism result in the need for runtime adjustment of
resources allocated to individual component services.

To address this problem, previous researches on quality
provisioning for services often perform static allocation first, and
then use replication technologies [7-12] to adjust the instant
resource capacity of individual component services at runtime.
While they lay down important foundations for capacity planning
in the traditional provider-centric computing environment, most
of them have not taken full advantage of information about the
workflow structure and the SLA specifications in service quality
provisioning. For examples, SLAs of some services might tolerate
certain percentages of request failure without incurring penalty.
Furthermore, clients often only care about the overall QoS of
the requested composite service and not those of its individual
components. If we only enhance the performance of one hotspot
component service, the performance bottleneck might be shifted
to subsequent component services in the same workflow, thus
resulting in little (if any) improvement in the overall service


http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:wby03@mails.tsinghua.edu.cn
mailto:chichihung@mail.tsinghua.edu.cn
http://dx.doi.org/10.1016/j.future.2008.06.003

200 B. Wu et al. / Future Generation Computer Systems 25 (2009) 199-212

workflow of
composite service

resource pool
\J

resource
allocation

maximizing success rate
of service requests with
minimized resource cost

Fig. 1. An example of resource allocation for composite service.

quality. Also, in the decision making of resource allocation, not
many schemes take the code/data replication and setup times for
services into consideration. In the real time environment of service
provisioning, such overhead will be very important in determining
the effectiveness of the schemes.

In this paper, we propose to improve dynamic resource
allocation for software service through tracing and prediction
of workload dynamics of its component services as requests
traverse and pipeline through the workflow. The main goal
here is to improve the accuracy of future workload prediction
of individual component services of a workflow dynamically,
and do the proper adjustment of resource allocation based
on this prediction in advance of the actual workload arrival.
Factors affecting service workload such as service time, transition
probability, replication overhead for service etc. as well as the
uncertainty in request arrival time are all taken into consideration
in our model. The performance matrix used here is to maximize
the number of requests completed under the constraints of
limited available resources. Experimental study on TPCW and
synthetic workflow shows that our dynamic workflow-based
resource allocation scheme is much more efficient in enhancing the
overall performance of composite services than current resource
allocation schemes do.

The outline for the rest of this paper is as follows. Section 2
gives related previous work on service composition and QoS
provisioning. Section 3 explains the basic workflow model and the
assumption we make in this paper. In Section 4, we propose a
dynamic greedy-based resource allocation scheme for composite
service based on the transition probability and arrival time of
requests workload. In order to compare our dynamic resource
allocation scheme with static resource allocation ones, we present
one static allocation algorithm in Section 5. Simulation results are
given in Section 6. Results show that our allocation scheme is much
more flexible and effective to deal with dynamic request arrival
and to maximize request success percentage. Finally, the paper
concludes in Section 7.

2. Related work

Lots of research efforts in SOA have been spent on the topic
of service composition. Some industrial standard specifications
are also proposed. For example, SOAP, WSDL, and UDDI [13]
aim at providing infrastructure to support Web service composi-
tion. BPEL4WS (Business Process Execution Language for Web ser-
vices) [14] combines Microsoft’s XLANG [15] and IBM’s WSFL (Web

service Flow Language) [16] to provide language support for the
formal specification of business processes and business interaction
protocols. WSCI (Web service Choreography Interface) [17] is an
XML-based interface description language that describes the flow
of messages exchanged by Web services. BPML (Business Process
Modeling Language) [18] is designed to express abstract and exe-
cutable processes that address all aspects of enterprise business
processes. Other proposed notations for service description and
composition include ebXML [19] and DAML-S [20].

From the viewpoint of actual service composition, there are
works on the service modeling and framework. SAHARA [21]
proposes two different composition models, the cooperative one
and the brokered one. SWORD [22] provides a simple and efficient
scheme for Web service composition. FUSION [23] describes a
framework for dynamic Web service composition and automatic
execution. The SELF-SERV architecture features a service manager
and a pool of services [26]. While these efforts often focus on the
expansion of service function capacity, new initiatives also start
to investigate service selection based on non-functional QoS of
services. [24] addresses the topic of dynamic QoS aware service
composition. However, the underlying workflow model does not
support parallelism nor branching. It just defines workflow as
a sequential chain of service operations. WebQ [25] proposes
an adaptive framework to maintain QoS by dynamic service
binding. [5] gives a quality driven approach to select component
services during the execution of a composite service. [29] adds QoS
classes to service selection.

Traditional resource allocation solves the problem of limited
resource availability when n processes try to access m resources.
Some processes might be able to access resource concurrently,
while other processes might require exclusive or sequential
access to the resource [32]. In distributed systems, how to
allocate m resources to n tasks determines the system efficiency,
throughput [33,34], or resource utilization [36]. However, their
workloads are relatively fixed and static, the resource allocating
methods are static as well, and they are not customized to
workflow with multiple component services.

With the increasing importance of service computing [35],
resource allocation for services that consider the dependency
relationships among component services have been proposed. [37]
presents a cluster-based decentralized resource allocation policy
in mini-grid by computing the dependency relationships of tasks
in a given real time DAG (direct acyclic graph) dynamically.
However, it deals with the scheduling of relatively fine-grained
execution entities such as processes using fork. Uncertainties in
either the workload or the execution time is not considered. [38]
performs the optimization of execution time of service workflows
through grouping services and scheduling them onto the grid
infrastructure. [39] presents a novel algorithm that only staticlly
maps workflow processes to existing Grid services. [40] considers
both the workflow and its performance QoS, but it focuses more on
scientific applications, not general Web services.

Our work is related to prior efforts in Web service composition.
We focus on improving the overall QoS of composite service
workflow after all the individual component services are selected.
Unlike the previous work on dynamic service selection, our
target is to construct a stable composite service through dynamic
resource allocation and service replication. Hence, our work is
actually complementary to most of the existing work mentioned
above.

3. Workflow model for composite service
In this section, we first give the assumptions that we make in

this paper, followed by the basic workflow model for composite
service that we use.



Download English Version:

https://daneshyari.com/en/article/424935

Download Persian Version:

https://daneshyari.com/article/424935

Daneshyari.com


https://daneshyari.com/en/article/424935
https://daneshyari.com/article/424935
https://daneshyari.com

