
Future Generation Computer Systems 25 (2009) 315–325

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Secure on-demand grid computing
M. Smith, M. Schmidt, N. Fallenbeck, T. Dörnemann, C. Schridde, B. Freisleben ∗

Department of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Street 3, D-35032 Marburg, Germany

a r t i c l e i n f o

Article history:
Received 2 December 2007
Accepted 12 March 2008
Available online 29 March 2008

Keywords:
Grid security
On-demand computing
Service orientation
Sandboxing
Virtualization
Trusted computing
Grid workflows

a b s t r a c t

In this paper, a novel approach for enabling Grid users to autonomously install and use custom software
on demand using an image creation station is presented, while at the same time offering new security
mechanisms to protect both software and data from other Grid users and external attackers. An
automated dynamic firewalling mechanism enables both virtual organization and user-based network
security setups. Furthermore, the Grid environment is partitioned into several zones to protect local
cluster resources from compromised Grid middleware. To enable the secure integration of this Grid
environment into existing business processes, an extension of BPEL is presented which allows the
execution of GSI secured Grid services in combination with existing business web services. The workflow
engine transparently handles proxy certificate creation and monitors proxy certificate lifetime. An
implementation based on the Globus Toolkit 4, the Sun Grid Engine and the ActiveBPEL Engine is
presented. A performance evaluation of the critical components of the new Grid setup is provided.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing [1] has become a well established method
for Internet-based high-performance computing. While the first
generation of Grid computing middleware solutions implemented
their own proprietary interfaces, the introduction of the service-
oriented computing paradigm and the corresponding web service
standards such as WSDL and SOAP in the field of Grid computing
through the Open Grid Services Architecture (OGSA) [2] has
increased the interoperability and thus has paved the way
for national and international Grid environments in which a
large number of academic and a growing number of business
applications can be hosted. In a commercial on-demand Grid, users
and applications come and go frequently, and the economic value
of both software and data is typically much higher than that in
a purely academic Grid. To facilitate the on-demand usage of a
Grid, it must be possible for users to autonomously install and
use their applications in a timely fashion even if the software
contains third-party components and requires root privileges for
installation. Consequently, there are much higher requirements for
administrative procedures and security mechanisms to enable on-
demand Grid computing.

∗ Corresponding author.
E-mail addresses: matthew@informatik.uni-marburg.de (M. Smith),

schmidtm@informatik.uni-marburg.de (M. Schmidt),
fallenbe@informatik.uni-marburg.de (N. Fallenbeck),
doernemt@informatik.uni-marburg.de (T. Dörnemann),
schriddc@informatik.uni-marburg.de (C. Schridde),
freisleb@informatik.uni-marburg.de (B. Freisleben).

Like most complex software systems, Grid middleware solu-
tions exhibit a number of security problems [3–5] which are fur-
ther compounded by the new on-demand usage scenario. Not only
do these security holes expose the heterogeneous Grid resources
to a homogeneous attack vector, but they also threaten existing
cluster resources and their users who up until now have worked
in a local and secure environment. Unlike traditional cluster sys-
tems and the small academic Grid initiatives where local admin-
istrators usually know their users’ software and usage habits, the
larger mixed academic and business Grids expose cluster adminis-
trators to a large number of unknown users with a great variety
of usage patterns. This makes the detection of malicious behav-
ior an extremely complex task. To make matters worse, software
and data are quickly becoming far more valuable than physical re-
sources, with organizations like the Deutsche Bank, Dresdner Bank,
IBM, T-Systems and BMW joining the German D-Grid initiative [6],
in which our work is performed.

As a consequence, Grids are now becoming an attractive target
for attackers, since the Grid offers standardized access to a large
number of machines storing potentially valuable data, which
can be misused in various ways. The considerable computing
power of clusters exposed via the Grid can be used to break
passwords and the large storage capacity can be used for storing
and sharing illegal software and data. The generous bandwidth
of the Internet connection is ideal for launching Denial-of-Service
(DoS) attacks or for hosting file sharing services, to name just
a few attacks. However, far more critical than these resource
attacks are the attacks against customer data. Crash test model
data of a new prototype car or a custom fluid simulation suite
both represent intellectual property worth substantial amounts
of money and need to be protected. If a Grid resource provider

0167-739X/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.03.002

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:matthew@informatik.uni-marburg.de
mailto:schmidtm@informatik.uni-marburg.de
mailto:fallenbe@informatik.uni-marburg.de
mailto:doernemt@informatik.uni-marburg.de
mailto:schriddc@informatik.uni-marburg.de
mailto:freisleb@informatik.uni-marburg.de
http://dx.doi.org/10.1016/j.future.2008.03.002


316 M. Smith et al. / Future Generation Computer Systems 25 (2009) 315–325

cannot ensure the end-to-end integrity and safety of customer
software and data, an industrial adoption of Grid technology will
not be possible. However, at the same time easy to use and
unobstructive administration capabilities must exist to enable on-
demand installation and usage of custom applications. These are
usually opposite requirements, and careful balancing is required
to fulfill both of them.

In this paper, a novel Grid environment is presented which
enables users to autonomously install and use custom software
(both service-oriented and traditional) on demand using an
image creation station, while at the same time offering new
security mechanisms to protect both software, data and business
process information from other Grid users and external attackers.
The solution is based on operating system virtualization and
offers dynamic image creation and deployment in a secured
environment. An automated dynamic firewalling mechanism
offers a Virtual Organization (VO) and user-based network security
setup and creates secure user network regions on demand.
In addition, the Grid environment is separated into several
zones to protect local cluster resources from compromised Grid
middleware. The Grid headnode and the image creation station are
both confined into separate compartments in a Grid demilitarized
zone (DMZ). To enable the secure integration of this Grid
environment into existing business workflows, an extension to
the Business Process Execution Language for Web Services (BPEL)
language and workflow execution engine is presented which
allows the execution of the Grid Security Infrastructure (GSI)
secured Grid services in combination with existing business web
services. The workflow engine transparently deals with the issues
of proxy certificate creation and certificate renewal (in the case of
long running jobs). The presented system allows both fine grained
service-oriented applications and legacy Grid applications to be
run side by side through a novel integration of the secure system
into existing cluster scheduling solutions. An implementation is
presented based on the Globus Toolkit 4, the Sun Grid Engine and
the ActiveBPEL Engine. A performance evaluation for the critical
components of the new Grid setup is provided.

The paper is organized as follows. Section 2 presents the prob-
lem statement. Section 3 shows the proposed Grid architecture.
Section 4 presents some implementation details and experimen-
tal results. Section 5 discusses related work. Section 6 concludes
the paper and outlines areas for future research.

2. Problem statement

In this paper, we deal with security issues currently hindering
commercial Grid adoption, which we encountered during our work
on the German national Grid project D-Grid [6]. The aim of the D-
Grid project is twofold. In the first phase, a research Grid is to be
created linking the existing high-performance compute resources
of German universities and research institutions in a free academic
Grid. The second phase is to encourage a pay-per-use of the Grid by
industrial users.

The classical computational Grid consists of a number of
backend clusters running a standard cluster scheduling solution
like Sun Grid Engine [7] or Torque [8] on the individual clusters.
To connect the clusters to the Grid, a Grid middleware like Globus,
Unicore or gLite is also installed on the cluster headnode, thus
enabling direct access to the cluster scheduling system. Grid users
either get a personal account on the cluster or share a pool account
with a number of other Grid users. Their software must be installed
locally on the cluster. This can be done in a number of ways. If the
software does not require root access to be installed and the user
has a local login, the user can log on to each cluster and manually
install the software in his or her user account. If the user does not
have login rights (which is quite often the case), the user is forced

to copy the source code of the application onto the cluster using
GridFTP [9] and then configure and compile the software using
batch commands submitted as Grid jobs via WS-GRAM [10]. This
is a painful way to install software, since each batch command
(i.e. ./configure && make && make install) is submitted as a Grid
job and is scheduled by the cluster scheduler. Output from the
commands can be returned as the job result or can be fetched
with GridFTP. Anyone who has installed moderately complex
software on foreign machines can imagine the difficulties involved
in installing software in this way, since it can take many iterations
until all library dependencies are met. The state-of-the-art Grid
fares even worse in the case of software which is not available in
source code and/or requires root privileges to install (any software
supplied as a Debian or Redhat package requires root privileges
to install since the package managers require root privileges to
run). In these cases, the users cannot install the software at all
and the administrators of the local clusters must be asked to
do it for them. This is an administrative hassle, not to mention
the security nightmare involved in granting any unknown user
software root privileges, and consequently, this will never happen.
The installation process is made even more complicated if the
application should offer custom service-oriented interfaces, since
these custom services need to be hosted by the Grid middleware
and as such should require administrative rights to be installed
and run with the same rights as the rest of the Grid middleware.
It should also be noted that the software of different users is
installed natively in the same system. Classical Grid computing
relies fully on standard operating system security mechanisms
to protect users from each other. These are all factors hindering
the adoption of the classical Grid in a business environment
where customers want to install and use software on demand.
The situation is further complicated by the introduction of service-
oriented applications whose workflow-based execution can collide
with traditional batch job applications both in their execution and
their security requirements.

If the Grid is to fulfill the vision of becoming the next-generation
Internet (as described in [11,12]), the complexity of installing and
maintaining it must be reduced significantly while also increasing
the level of security. One of the main functional goals of an on-
demand Grid is the ease of installation of applications and services
and their use on a dynamic basis for a large number of users in a
secure fashion. This is a major departure from the classical Grid
in which only a relatively small number of known users work in
a closed system on a small range of custom software. The larger
number of unknown users with the capability to autonomously
install their own software creates a large number of new security
issues which need to be dealt with:

- Secure application deployment: In an on-demand Grid, users
should be capable of installing their software autonomously
without endangering other users, even if root privileges are
required.

- Worker node sandboxing: Due to the shared use of Grid
resources and the sensitive nature of both user software and
data, it is necessary to place each user in a separate sandbox
in which the user is safe and from which the user cannot
attack other users of the Grid. This includes both local issues
such as file system access and process monitoring, as well as
network issues, such as packet sniffing and denial-of-service
attacks. The sandboxing environment must be flexible enough
to support both traditional batch job security and service-
oriented application security.

- Middleware separation: The Grid middleware is a central com-
ponent in any Grid environment, offers a single homogeneous
point of entry to many Grid sites and is per necessity reachable
from the Internet. Thus, it is vital that the Grid headnode is as
separate as possible from the local Grid resources and restricted



Download English Version:

https://daneshyari.com/en/article/424947

Download Persian Version:

https://daneshyari.com/article/424947

Daneshyari.com

https://daneshyari.com/en/article/424947
https://daneshyari.com/article/424947
https://daneshyari.com

