Future Generation Computer Systems 25 (2009) 337-345

Contents lists available at ScienceDirect = s
Future Generation Computer Systems —
journal homepage: www.elsevier.com/locate/fgcs —

AUGUSTUS at MediGRID: Adaption of a bioinformatics application to grid
computing for efficient genome analysis

Dietmar Sommerfeld **, Thomas Lingner”, Mario Stanke?, Burkhard Morgenstern®, Harald Richter¢

2 Gesellschaft fiir wissenschaftliche Datenverarbeitung mbH Géttingen, Am Fassberg, 37077 Gottingen, Germany
b Department of Bioinformatics, University of Géttingen, 37077 Géttingen, Germany
¢ Department of Informatics, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 30 November 2007
Received in revised form

16 April 2008

Accepted 14 May 2008
Available online 30 June 2008

In past years, researchers from many domains have discovered Grid technology which opens up new
possibilities in solving problems that are difficult to handle with traditional cluster computing. With
the rapidly increasing number of partially or completely sequenced genomes, computational genome
annotation is a particularly challenging task in computational biology. In this paper, we describe how
we adapted the gene-finding tool AUGUSTUS to Grid computing in the context of the German MediGRID
project. The gridification process starts with providing security requirements and running the application
manually using Grid middleware. Afterwards, the application is described as a workflow of successive
program executions, which are automatically distributed to appropriate Grid resources by a workflow
engine. Finally, we show how a convenient graphical user interface for end users is created by means of

Keywords:
Grid computing
Bioinformatics

Gridification a portal framework.
Workflow

Grid portal

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing has become a key technology to solve large-
scale computational problems by using distributed heterogeneous
resources. It is a special kind of distributed computing where com-
puting and data resources are shared across existing administra-
tive domains. Grids make it possible to utilize resources at many
different sites from different organizations. Within a Grid, all mem-
bers form a new administrative domain called Virtual Organization
(VO).

If applications need more resources than a single computing
center can provide, they can be gridified, i.e. distributed to several
sites. Gridification is the process of enabling an application to be
executed on a Grid. It allows the execution of applications that
are too large for one site and reduces their execution time by
acquiring resources from outside that were not accessible before.
Usually, resources in computing centers are not fully utilized.
Such unused resources can be made available to the Grid. On the
other hand, computational loads are never constant, and with Grid
computing an overloaded site can migrate jobs to sites with less
load. The amount of resources made available via Grid technology

* Corresponding author. Tel.: +49 551 201 1841; fax: +49 551 201 2150.
E-mail addresses: dsommer@gwdg.de (D. Sommerfeld), thomas@gobics.de
(T. Lingner), mario@gobics.de (M. Stanke), burkhard@gobics.de (B. Morgenstern),
harald.richter@tu-clausthal.de (H. Richter).

0167-739X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.05.010

will increase because many public research institutes will no
longer have the means to set up large local clusters. Instead,
computational projects are increasingly encouraged and receive
funding to use computing power from a Grid.

The work described in this paper was carried out within the
German MediGRID project. MediGRID is part of the German e-
Science initiative D-Grid. The aim of the project is to provide a
community Grid for researchers in the fields of medicine, biomed-
ical informatics, and life sciences. Four types of pilot application
were selected for the first phase of MediGRID: bioinformatics,
image processing, biomedical ontology, and clinical research
applications. The users of these applications often have limited
computer use skills. Therefore, it is crucial to make Grid solutions
as user friendly as possible.

Resources used for scientific computing are very heteroge-
neous. To handle the heterogeneity, Grid middleware is employed
to provide a common basis on which the development of dis-
tributed applications can be settled. MediGRID uses the Globus
Toolkit 4 (GT4) [1] as its Grid middleware which is based on state-
ful web services. The services implemented by GT4 are compliant
to the Open Grid Services Architecture [2] and are in particular re-
sponsible for security requirements, execution and data manage-
ment, monitoring and resource discovery.

On top of the basic GT4 middleware, MediGRID employs
further specialized middleware services. The most important one
is an advanced workflow system for orchestrating the distributed
execution of applications on Grid resources. An application


http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:dsommer@gwdg.de
mailto:thomas@gobics.de
mailto:mario@gobics.de
mailto:burkhard@gobics.de
mailto:harald.richter@tu-clausthal.de
http://dx.doi.org/10.1016/j.future.2008.05.010

338 D. Sommerfeld et al. / Future Generation Computer Systems 25 (2009) 337-345

workflow [3] consists of several successive program executions
and intermediate data transfers. This allows to model sequences
of programs and the dependencies between these programs.! At
the presentation layer, the MediGRID portal provides a graphical
interface which is suitable for end users.

This paper describes the gridification of applications for
MediGRID which has to be done by experienced developers. The
gridification process involves GT4, the workflow system and the
portal framework as required components. It does not require
changes to the program source code. We examine the process with
AUGUSTUS [4] as an example from the field of bioinformatics.
AUGUSTUS is a successful and widely used software program to
identify gene structures in eukaryotic genomes, a fundamental task
in computational genome annotation.

There are many life science applications from various research
fields which have the same software architecture properties as
AUGUSTUS. For example, analysis of time series like electroen-
cephalograms, processing of image data as in gene-expression
micro-array experiments and simulation of complex biological or
chemical systems can be considered similar gridification candi-
dates. We expect that Grid technology improves running time and
accessibility of such applications.

The paper is organized as follows: in Section 2, we describe an
AUGUSTUS application run and how the computation is distributed
on clusters without using Grid middleware. Section 3 explains
the execution of applications on a Grid using the services of
GT4. Section 4 introduces the workflow system and shows what
descriptions are necessary to enable automatic distribution on Grid
resources. Section 5 describes how graphical user interfaces for
Grid applications are created using portlets, and in Sections 6 and
7, the paper concludes with first results, the lessons learned, and a
summary.

2. Augustus

AUGUSTUS [4] is a DNA-sequence-based gene prediction
program for eukaryotes, i.e. organisms with a cell nucleus. The
purpose of the program is to identify the location and structure of
all protein-coding genes in a given genome. Gene prediction is the
first and most important step in the analysis of newly sequenced
organisms. During the last years, AUGUSTUS has been used in many
genome projects, e.g.[6,7]. Aweb interface for AUGUSTUS has been
available at the website of the Bioinformatics group in Géttingen
for several years [8]. Because the computing power of the group is
limited, the web interface only allows the input of relatively short
sequences, up to 3 million base pairs.

AUGUSTUS is typical for a whole class of bioinformatic
applications: the program uses sophisticated statistical modeling
and prediction algorithms which are computationally demanding.
It does not require user interaction and can be run unattended.
Input and output data is accessed from a central data storage
repository. An application run consists of several phases which
are separated by i/o operations that address files. Via these files,
data exchange between phases is done. The computing phases are
loosely coupled, i.e. they have little communication in relation to
the computation. Furthermore, the software is distributed as open
source software and has no data-related security requirements.

AUGUSTUS can be used as an ab initio program, which means
that the prediction is based solely on the input DNA sequence. As a
second possibility, the software may also incorporate hints on the
gene structure coming from extrinsic sources such as BLAST [9] and

1 Throughout the paper we use the term application for complex usage scenarios
involving several executables/executions, while program stands for a single
executable/execution.

DIALIGN [10,11] search results. With external hints, the prediction
performance of AUGUSTUS can be increased significantly [12]. On
the other hand, the computational costs to find external hints can
exceed the costs of the program itself, in particular when large
databases are used for BLAST search. Therefore, the search for
external hints is not integrated into the AUGUSTUS web interface.
In the following, we will focus on ab initio use of AUGUSTUS.
In this case the command line program has two mandatory
arguments: the query file and the species. The query file contains
the input DNA sequences in uncompressed (multiple) FASTA [13]
format. The species parameter denotes where the DNA sequences
originate from, e.g. human, fruit fly, baker’s yeast, etc. There are
several optional parameters which influence the way the genes
are predicted. The output of AUGUSTUS is written to the command
line output or into user-specified files. The output is compatible
with the General Feature Format which can be visually interpreted
by means of a genome browser [14]. Alternatively, the results can
be transformed into gene maps in graphical representation via
gff2ps [15]. A typical command line looks like:

augustus --species=human example.fa > outputfile

Running AUGUSTUS on a single computer is relatively easy.
Nevertheless, depending on the number and length of sequences
and the parameter values, gene prediction can be computationally
very intensive. For example, the application to the human genome
with its 3 billion base pairs can take up to several weeks. A
possibility to speed up the computation without modifying the
program source code is to parallelize the computation. This
can be done by splitting the input file into smaller files which
contain fewer sequences, and to run the program on these input
files separately. Long sequences can be split into several smaller
sequences if a suitable overlap according to maximum gene size
is used. Data parallelization provides the possibility of distributing
the computation across several machines, for example the nodes of
a local cluster. Typically, these nodes have a shared file system, so
the handling of input and output data is easy. However, additional
effort is necessary for handling the batch system, and for checking
if all submitted jobs are executed properly.

The organizational effort increases if local cluster resources are
not sufficient for the demands of the computation, e.g. when an
external hint search is incorporated. In this case, further suitable
resource providers have to be found to support the computation.
For the AUGUSTUS application, this means splitting the input data
and distributing them to multiple sites where the program will run.
Without Grid technology, this necessitates dealing with several
potentially different authentication and resource management
systems. In the end, the output files have to be transferred back
to the user for result analysis.

Doing all these steps manually is tedious and time-consuming.
The benefit of the parallelization is the overall decrease in
turnaround time, allowing larger problem sizes to be tackled,
which cannot be accomplished with limited local resources. Some
of the organizational problems, such as handling of user accounts
and job submissions on multiple sites, can be solved by the
middleware layer of the Grid.

3. Executing AUGUSTUS on the Grid

The first step before we can execute AUGUSTUS on the Grid is
to provide for authentication and authorization. The Grid security
infrastructure (GSI) of GT4 is based on a public key infrastructure.
This means, every user and every server in the Grid is authenticated
by X.509 [16] identity certificates. Thus, the first step to use
Grid resources, is to get a user certificate from a certificate
authority that is recognized by the Grid’s security policy. To get an
authorization for the machines in the Grid the user has to become



Download English Version:

https://daneshyari.com/en/article/424949

Download Persian Version:

hitps://daneshyari.com/article/424949

Daneshyari.com


https://daneshyari.com/en/article/424949
https://daneshyari.com/article/424949
https://daneshyari.com

