ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

Future Generation Computer Systems 25 (2009) 364-370

FGCS

QUTURE
@®ENERATION
®OMPUTER
QYSTEMS

www.elsevier.com/locate/fgcs

An efficient adaptive scheduling policy for high-performance computing

J.H. Abawajy*

Deakin University, School of Engineering and Information Technology, Geelong, VIC. 3217, Australia

Received 25 March 2006; accepted 20 April 2006
Available online 26 July 2006

Abstract

The advent of commodity-based high-performance clusters has raised parallel and distributed computing to a new level. However, in order to
achieve the best possible performance improvements for large-scale computing problems as well as good resource utilization, efficient resource
management and scheduling is required. This paper proposes a new two-level adaptive space-sharing scheduling policy for non-dedicated
heterogeneous commodity-based high-performance clusters. Using trace-driven simulation, the performance of the proposed scheduling policy is
compared with existing adaptive space-sharing policies. Results of the simulation show that the proposed policy performs substantially better than

the existing policies.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Distributed systems; Commodity cluster computing; Space-sharing; Job scheduling; Heterogeneous systems; Performance analysis

1. Introduction

The processing power of a single computer system has
become inadequate for certain problems of a global scale,
and the use of a super-computer is not always an option for
many researchers. With advances in hardware, software and
computer networks, the pre-dispositions in high-performance
computing system design and deployment have shifted from
the conventional parallel and distributed super-computer onto
network-based distributed systems such as commodity-based
cluster computing [11]. Clusters are now recognized as popular
high-performance computing platforms for both scientific and
commercial applications [5]. These commodity-based high-
performance clusters have better price—performance ratios for
a given computing problem than alternative high-performance
computing platforms and have raised parallel and distributed
computing to a new level.

In this paper, we address the problem of job scheduling
for commodity-based high-performance clusters (HPC) with an
emphases on space-sharing scheduling policy. The motivation
for addressing this problem is that, while commodity-
based HPC clusters offer tremendous computing power, this
potential power is not exploited effectively [12,2]. Also, as

*Tel.: +61 3 52271376.
E-mail address: jemal @sunet.com.au.

0167-739X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.04.007

commodity clusters become more commonly used for large-
scale applications that pose tremendous processing and/or
storage demands on the system, resource management and
scheduling becomes an important issue for the efficient
deployment of commodity-based HPC clusters [2,12,6].

Since commodity-based HPC clusters are commonly
operated in space-sharing mode [6], the space-sharing
scheduling policy is an appropriate policy for such platform.
Space-sharing is the short-term partition of processors in the
system into varying size sets and then the allocation of each set
to different jobs. There are three main forms of space-sharing
disciplines: static space-sharing, adaptive space-sharing, and
dynamic space-sharing. Under static space-sharing policy, the
processors are divided into a fixed number of disjoint sets,
each of which is allocated to individual jobs. The problem with
the static approach is that it can lead to a problem known as
processor fragmentation, in which there is a mismatch between
the allocated processor size and the processor requirements
of the jobs [1]. Also, short jobs can easily be blocked by
long jobs for a long time before being executed. However, in
practice short jobs usually demand a short turnaround time. The
adaptive space-sharing policy configures each job to execute
on a subset of the total available processors, the size of which is
based on the job’s processor requirements as well as the current
system load conditions. However, adaptive approaches are
not sensitive to subsequent system changes. This shortcoming


http://www.elsevier.com/locate/fgcs
mailto:jemal@sunet.com.au
http://dx.doi.org/10.1016/j.future.2006.04.007

J.H. Abawajy / Future Generation Computer Systems 25 (2009) 364-370 365

is addressed in the dynamic space-sharing approach, where
processors can be taken away from running jobs, or jobs can be
given extra processors at run-time. This pre-emptive capability,
however, entails substantial overhead, as such dynamic space-
sharing policies are commonly used in shared memory systems,
while adaptive space-sharing policies are the preferred choice
in distributed systems over the static space-sharing policy.

In this paper, we propose a new adaptive space-sharing
policy for non-dedicated, heterogeneous and distributively
owned HPC clusters [2]. Although the adaptive space-sharing
policy has been shown to provide better performance than the
static space-sharing policy for distributed memory systems [9,
3], the static space-sharing policy is the most common approach
used in commodity-based HPC clusters [6,10,7]. Using trace-
driven simulation, the effectiveness of the proposed policy is
examined. We compare the performance of the proposed policy
with two baseline policies. The results show that the proposed
policy provides substantial performance improvements at
system loads of interest (i.e., medium-to-high system loads).
Also, an increased understanding of the ways in which a shared
environment and resource heterogeneity affect space-sharing
parallel job scheduling policies is discussed. From this study,
we conclude that an adaptive space-sharing policy based on
commodity clusters is viable, both from a conceptual point of
view and quantitatively for jobs of sufficient size.

The rest of the paper is organized as follows. Section 2
discusses the background, related work and system model
used in this paper. In Section 3, a new adaptive space-sharing
policy is proposed to address these problems. In Section 5, the
baseline adaptive space-sharing policies used to compare with
the proposed policy are discussed. In Section 6, we describe the
experimental setup as well as the system and workload models
used in the experiments. The performance of these adaptive
policies under various system and workload parameters is
presented in Section 7. This section shows that the proposed
adaptive policy outperforms two different similar policies. The
conclusion and future directions are given in Section 8.

2. Background and problem statement

In this section, we discuss the background, related work
and the system workloads. We also formulate the problem and
discuss the basic structure of adaptive space-sharing policies
and the problem facing these scheduling policies under a shared
heterogeneous environment.

2.1. Commodity-based high-performance computing

Commodity-based HPC clusters can generally be classified
into enterprise high-performance clusters (EHPC) and per-
vasive high-performance clusters (PHPC). Both clusters are
formed from a collection of commodity off-the-shelf hardware
computers interconnected and configured to operate as a sin-
gle unit. However, computers in EHPC are dedicated, homoge-
neous and interconnected with a local-area network. Also, the
entire system is privately owned and operates within a network
scope managed by a single system administrator. In contrast,

pervasive computing environments are far more dynamic and
heterogeneous than enterprise environments. In pervasive com-
puting, heterogeneity occurs in many aspects: hardware, soft-
ware platforms, network protocols, and processors. Also, com-
puters in PHPC are individually owned, non-dedicated and in-
terconnected with a local-area or wide-area network [2].

2.2. System workloads

In this paper, we focus on pervasive high-performance
clusters (PHPC). Users submit applications to the system
for execution without being concerned about the heterogenity
or the changing set of volunteer machines on which the
computation is actually performed. In this paper, we refer to a
program or an application as a job. There are two types of jobs
in the system: local and parallel. A parallel job is composed
of a set of tasks that can execute on any of the processors as
external tasks. In contrast, the local jobs consist of a single
process (task) and run as a single entity on the workstation that
they are originated on as local tasks. Moreover, local tasks have
pre-emptive priority over the external tasks, which means that,
when a local task arrives at a node, the external tasks running
on that node are suspended and will be resumed when the node
becomes available or migrated to another available node by the
Migration Manager.

2.3. Problem statement

The universal problem in resource allocation is the conflict
between individual users trying to maximize their use of a
resource and the global limitations on the availability of that
resource. In shared and heterogeneous systems, in addition to
the classic allocation problem (how many processors to allocate
to a job), we are also faced with the placement problem (which
processors to allocate to a job) and task reassignment problem
(when and which tasks to reallocate to where).

Exiting scheduling policies for commodity-based HPC
clusters provide only rudimentary facilities for space-sharing
the processors. Existing adaptive space-sharing policies
have been developed for traditional dedicated homogeneous
multiprocessor systems [9] and have also found their way into
commodity cluster computing environments with very little
or no modifications [8]. Also, most of the previous studies
focus on optimizing a single application at a time. However,
the viability of running parallel and sequential applications
concurrently on clusters has been demonstrated in [4].

The conventional adaptive space-sharing policy can gener-
ally be characterized by three main attributes:

1. the scheduler is activated whenever a job arrives and there
are idle processors, or whenever a job departs and there are
queued jobs;

2. an incoming job is assigned to a subset of the total available
processors; and

3. a running job releases its partition only after it finishes
execution.



Download English Version:

https://daneshyari.com/en/article/424954

Download Persian Version:

https://daneshyari.com/article/424954

Daneshyari.com


https://daneshyari.com/en/article/424954
https://daneshyari.com/article/424954
https://daneshyari.com

