Future Generation Computer Systems 46 (2015) 69-84

Contents lists available at ScienceDirect o - .
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs - —

Using imbalance metrics to optimize task clustering in scientific
workflow executions

Weiwei Chen®*, Rafael Ferreira da Silva?, Ewa Deelman?, Rizos Sakellariou

_gm—

® CrossMark

b

2 University of Southern California, Information Sciences Institute, Marina del Rey, CA, USA
b University of Manchester, School of Computer Science, Manchester, UK

HIGHLIGHTS

e Generalize the runtime imbalance and dependency imbalance problem in task clustering.
e Propose quantitative imbalance metrics to improve task clustering.
e Evaluate the imbalance metrics and balanced task clustering methods with five workflows.

ARTICLE INFO

ABSTRACT

Article history:

Received 15 February 2014
Received in revised form

13 September 2014

Accepted 19 September 2014
Available online 13 October 2014

Keywords:

Scientific workflows
Performance analysis
Scheduling
Workflow simulation
Task clustering

Load balancing

Scientific workflows can be composed of many fine computational granularity tasks. The runtime of these
tasks may be shorter than the duration of system overheads, for example, when using multiple resources
of a cloud infrastructure. Task clustering is a runtime optimization technique that merges multiple short
running tasks into a single job such that the scheduling overhead is reduced and the overall runtime
performance is improved. However, existing task clustering strategies only provide a coarse-grained
approach that relies on an over-simplified workflow model. In this work, we examine the reasons that
cause Runtime Imbalance and Dependency Imbalance in task clustering. Then, we propose quantitative
metrics to evaluate the severity of the two imbalance problems. Furthermore, we propose a series of task
balancing methods (horizontal and vertical) to address the load balance problem when performing task
clustering for five widely used scientific workflows. Finally, we analyze the relationship between these
metric values and the performance of proposed task balancing methods. A trace-based simulation shows
that our methods can significantly decrease the runtime of workflow applications when compared to a
baseline execution. We also compare the performance of our methods with two algorithms described in

the literature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many computational scientists develop and use large-scale,
loosely-coupled applications that are often structured as scientific
workflows. Although the majority of the tasks within these appli-
cations are often relatively short running (from a few seconds to
a few minutes), in aggregate they represent a significant amount
of computation and data [1,2]. When executing these applications
in a multi-machine, distributed environment, such as the Grid or

* Correspondence to: USC Information Sciences Institute, 4676 Admiralty Way
Ste 1001, Marina del Rey, CA, 90292, USA. Tel.: +1 310 448 8408.
E-mail addresses: weiweich@usc.edu, wchenpublic@gmail.com,
weiweich@acm.org (W. Chen), rafsilva@isi.edu (R. Ferreira da Silva),
deelman@isi.edu (E. Deelman), rizos@cs.man.ac.uk (R. Sakellariou).

http://dx.doi.org/10.1016/j.future.2014.09.014
0167-739X/© 2014 Elsevier B.V. All rights reserved.

the Cloud, significant system overheads may exist and may slow-
down the application execution [3]. To reduce the impact of such
overheads, task clustering techniques [4-12] have been developed
to group fine-grained tasks into coarse-grained tasks so that the
number of computational activities is reduced and so that their
computational granularity is increased. This reduced the (mostly
scheduling related) system overheads. However, there are several
challenges that have not yet been addressed.

A scientific workflow is typically represented as a directed
acyclic graph (DAG). The nodes represent computations and the
edges describe data and control dependencies between them.
Tasks within a level (or depth within a workflow DAG) may have
different runtimes. Proposed task clustering techniques that merge
tasks within a level without considering the runtime variance may
cause load imbalance, i.e., some clustered jobs may be composed
of short running tasks while others of long running tasks. This


http://dx.doi.org/10.1016/j.future.2014.09.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.09.014&domain=pdf
mailto:weiweich@usc.edu
mailto:wchenpublic@gmail.com
mailto:weiweich@acm.org
mailto:rafsilva@isi.edu
mailto:deelman@isi.edu
mailto:rizos@cs.man.ac.uk
http://dx.doi.org/10.1016/j.future.2014.09.014

70 W. Chen et al. / Future Generation Computer Systems 46 (2015) 69-84

imbalance delays the release of tasks from the next level of the
workflow, penalizing the workflow execution with an overhead
produced by the use of inappropriate task clustering strategies
[13]. A common technique to handle load imbalance is overde-
composition [14]. This method decomposes computational work
into medium-grained balanced tasks. Each task is coarse-grained
enough to enable efficient execution and reduce scheduling over-
heads, while being fine-grained enough to expose significantly
higher application-level parallelism than what is offered by the
hardware.

Data dependencies between workflow tasks play an important
role when clustering tasks within a level. A data dependency means
that there is a data transfer between two tasks (output data for one
and input data for the other). Grouping tasks without considering
these dependencies may lead to data locality problems, where
output data produced by parent tasks are poorly distributed. As
a result, data transfer times and failure probabilities increase.
Therefore, we claim that data dependencies of subsequent tasks
should be considered.

We generalize these two challenges (Runtime Imbalance and
Dependency Imbalance) to the general task clustering load balance
problem. We introduce a series of balancing methods to address
these challenges. However, there is a tradeoff between runtime
and data dependency balancing. For instance, balancing runtime
may aggravate the Dependency Imbalance problem, and vice versa.
Therefore, we propose a series of quantitative metrics that reflect
the internal structure (in terms of task runtimes and dependencies)
of the workflow and use them as a criterion to select and balance
the solutions.

In particular, we provide a novel approach to capture the imbal-
ance metrics. Traditionally, there are two approaches to improve
the performance of task clustering. The first one is a top-down
approach [15] that represents the clustering problem as a global
optimization problem and aims to minimize the overall workflow
execution time. However, the complexity of solving such an op-
timization problem does not scale well since most solutions are
based on genetic algorithms. The second one is a bottom-up ap-
proach [4,10] that only examines free tasks to be merged and opti-
mizes the clustering results locally. In contrast, our work extends
these approaches to consider the neighboring tasks including sib-
lings, parents, and children, because such a family of tasks has
strong connections between them.

The quantitative metrics and balancing methods were intro-
duced and evaluated in [16] on five workflows. In this paper, we
extend this previous work by studying:

e the performance gain of using our balancing methods over a
baseline execution on a larger set of workflows;

e the performance gain over two additional task clustering
methods described in the literature [9,10];

e the performance impact of the variation of the average data size
and number of resources;

e the performance impact of combining our balancing methods
with vertical clustering.

The rest of the paper is organized as follows. Section 2 gives
an overview of the related work. Section 3 presents our workflow
and execution environment models. Section 4 details our heuristics
and algorithms for balancing. Section 5 reports experiments and
results, and the paper closes with a discussion and conclusions.

2. Related work

System overhead analysis [17,18] is a topic of great inter-
est in the distributed computing community. Stratan et al. [19]
evaluate in a real-world environment Grid workflow engines in-
cluding DAGMan/Condor and Karajan/Globus. Their methodology

focuses on five system characteristics: overhead, raw performance,
stability, scalability, and reliability. They point out that resource
consumption in head nodes should not be ignored and that the
main bottleneck in a busy system is often the head node. Pro-
dan et al. [18] offered a complete Grid workflow overhead clas-
sification and a systematic measurement of overheads. In Chen
et al. [3], we extended [18] by providing a measurement of major
overheads imposed by workflow management systems and execu-
tion environments and analyzed how existing optimization tech-
niques improve the workflow runtime by reducing or overlapping
overheads. The prevalent existence of system overheads is an im-
portant reason task clustering provides significant performance
improvement for workflow-based applications. In this paper, we
aim to further improve the performance of task clustering under
imbalanced load.

The low performance of fine-grained tasks is a common prob-
lem in widely distributed platforms where the scheduling over-
head and queuing times at resources are high, such as Grid and
Cloud systems. Several works have addressed the control of task
granularity of bags of tasks. For instance, Muthuvelu et al. [4]
proposed a clustering algorithm that groups bags of tasks based
on their runtime—tasks are grouped up to the resource capacity.
Later, they extended their work [5] to determine task granular-
ity based on task file size, CPU time, and resource constraints. Re-
cently, they proposed an online scheduling algorithm [6,7] that
groups tasks based on resource network utilization, user’s budget,
and application deadline. Ng et al. [8] and Ang et al. [9] introduced
bandwidth in the scheduling framework to enhance the perfor-
mance of task scheduling. Longer tasks are assigned to resources
with better bandwidth. Liu and Liao [10] proposed an adaptive
fine-grained job scheduling algorithm to group fine-grained tasks
according to processing capacity and bandwidth of the current
available resources. Although these techniques significantly re-
duce the impact of scheduling and queuing time overhead, they
do not consider data dependencies.

Task granularity control has also been addressed in scientific
workflows. For instance, Singh et al. [ 11] proposed level- and label-
based clustering. In level-based clustering, tasks at the same level
of the workflow can be clustered together. The number of clusters
or tasks per cluster is specified by the user. In the label-based clus-
tering method, the user labels tasks that should be clustered to-
gether. Although their work considers data dependencies between
workflow levels, it is done manually by the users, which is prone
to errors and it is not scalable. Recently, Ferreira da Silva et al.
[12,20] proposed task grouping and ungrouping algorithms to con-
trol workflow task granularity in a non-clairvoyant and online con-
text, where none or few characteristics about the application or
resources are known in advance. Their work significantly reduced
scheduling and queuing time overheads, but did not consider data
dependencies.

A plethora of balanced scheduling algorithms has been devel-
oped in the networking and operating system domains. Many of
these schedulers have been extended to the hierarchical setting.
Lifflander et al. [14] proposed to use work stealing and a hier-
archical persistence-based rebalancing algorithm to address the
imbalance problem in scheduling. Zheng et al. [21] presented an
automatic hierarchical load balancing method that overcomes the
scalability challenges of centralized schemes and poor solutions
of traditional distributed schemes. There are other scheduling al-
gorithms [22] that indirectly achieve load balancing of workflows
through makespan minimization. However, the benefit that can be
achieved through traditional scheduling optimization is limited by
its complexity. The performance gain of task clustering is primar-
ily determined by the ratio between system overheads and task
runtime, which is more substantial in modern distributed systems
such as Clouds and Grids.



Download English Version:

https://daneshyari.com/en/article/424964

Download Persian Version:

https://daneshyari.com/article/424964

Daneshyari.com


https://daneshyari.com/en/article/424964
https://daneshyari.com/article/424964
https://daneshyari.com

