Future Generation Computer Systems 46 (2015) 114-126

Contents lists available at ScienceDirect & =
FIGICIS
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Data-centric iteration in dynamic workflows

—

@ CrossMark

Jonas Dias?, Gabriel Guerra®, Fernando Rochinha?, Alvaro L.G.A. Coutinho?,
Patrick Valduriez?, Marta Mattoso **

2 COPPE - Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Y INRIA and LIRMM, Montpellier, France

HIGHLIGHTS

Algebraic operators support data-centric iteration in dynamic workflows.
Runtime data lineage, a concept inspired by provenance enables dynamic loops.
Two algorithms support runtime adaptation of the workflow based on user input.
Real-life experiment for Uncertainty Quantification in the Oil & Gas domain.

A novel iterative workflow for Uncertainty Quantification is steered by users.

ARTICLE INFO

ABSTRACT

Article history:

Received 15 February 2014
Received in revised form

4 October 2014

Accepted 10 October 2014
Available online 22 October 2014

Keywords:

Scientific workflows
Dynamic workflows
Iteration

Steering

Dynamic workflows are scientific workflows to support computational science simulations, typically us-
ing dynamic processes based on runtime scientific data analyses. They require the ability of adapting the
workflow, at runtime, based on user input and dynamic steering. Supporting data-centric iteration is an
important step towards dynamic workflows because user interaction with workflows is iterative. How-
ever, current support for iteration in scientific workflows is static and does not allow for changing data at
runtime. In this paper, we propose a solution based on algebraic operators and a dynamic execution model
to enable workflow adaptation based on user input and dynamic steering. We introduce the concept of
iteration lineage that makes provenance data management consistent with dynamic iterative workflow
changes. Lineage enables scientists to interact with workflow data and configuration at runtime through
an API that triggers steering. We evaluate our approach using a novel and real large-scale workflow for
uncertainty quantification on a 640-core cluster. The results show impressive execution time savings from
2.5 to 24 days, compared to non-iterative workflow execution. We verify that the maximum overhead in-
troduced by our iterative model is less than 5% of execution time. Also, our proposed steering algorithms
are very efficient and run in less than 1 millisecond, in the worst-case scenario.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

modeling this process as a workflow of activities that operate on
the datasets. SWfMS implement a workflow specification model

Large-scale scientific experiments tend to explore big datasets,
searching for confirmation (or not) of given hypotheses. The pro-
cess typically involves multiple computing steps supported by pro-
grams and chained with scripts. Scientific Workflow Management
Systems (SWfMS) [1] have been successful in helping scientists

* Correspondence to: COPPE, Federal University of Rio de Janeiro, P.O. Box 68511,
21941-972 Rio de Janeiro, R, Brazil. Tel.: +55 21 2562 8694; fax: +55 21 2562 8080.
E-mail addresses: jonasdias@cos.uftj.br (J. Dias), gguerra@mecsol.ufrj.br
(G. Guerra), faro@mecanica.coppe.ufrj.br (F. Rochinha), alvaro@nacad.uftj.br
(A.L.G.A. Coutinho), Patrick.Valduriez@inria.fr (P. Valduriez), marta@cos.ufrj.br
(M. Mattoso).

http://dx.doi.org/10.1016/j.future.2014.10.021
0167-739X/© 2014 Elsevier B.V. All rights reserved.

and its execution model. The specification model is supported by a
workflow programming language that allows for workflow compo-
sition. The execution model is supported by an execution engine,
which also provides for result analysis, based on provenance [2].
SWIMS should support specific needs of large-scale workflows. For
instance, to reduce execution time, data intensive workflows need
to run in parallel in high performance computing (HPC) environ-
ments. They may also need specialized features such as iteration.
Iteration is a basic concept that is supported by most program-
ming languages. Because it is intuitive, it has been used extensively
in the development of algorithms and computational models. Sci-
entists usually program their iterative methods directly within

http://dx.doi.org/10.1016/j.future.2014.10.021
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.10.021&domain=pdf
mailto:jonasdias@cos.ufrj.br
mailto:gguerra@mecsol.ufrj.br
mailto:faro@mecanica.coppe.ufrj.br
mailto:alvaro@nacad.ufrj.br
mailto:Patrick.Valduriez@inria.fr
mailto:marta@cos.ufrj.br
http://dx.doi.org/10.1016/j.future.2014.10.021

J. Dias et al. / Future Generation Computer Systems 46 (2015) 114-126 115

compiled applications or scripts. However, when modeling an iter-
ative application as a scientific workflow, the workflow language
has to support iterative constructs. Current support for iteration in
scientific workflows is designed for simpler loop behaviors [3-7].
They typically are control-flow-based and rely on three iteration
types [8]: (1) counting loops without dependencies, (2) counting
loops with dependencies and (3) conditional loops. However, these
iteration types are static and scientists cannot change the loop
specification at runtime.

Workflow configuration is likely to change during its life cycle,
as the scientist may need to refine a numerical model, try other al-
gorithms or explore different slices of the parameter space to find
better results. This exploratory nature of large-scale scientific ex-
perimentation makes workflows iterative. The workflow specifica-
tion needs to be evaluated and explored several times by scientists
until a solution is found. Thus, scientists evaluate the results they
get, and as adjustments are needed to achieve better results, they
must resubmit the workflow execution after doing the necessary
changes. Waiting for these results may take a very long time. Sci-
entists usually do not wait until the end of the workflow execution.
They try to analyze partial results and, if they can infer that the exe-
cution is not on the right track, they abort it, refine data parameters
on the specification, and restart. Such manual support of iteration
makes it hard to manage the evolution of scientific data analysis.
For example, scientists may find it hard to analyze the converged
error at runtime or discover which parameter combination they
are exploring has produced the best outcome.

To tackle the exploratory nature of science and the dynamic
process involved in scientific analysis, dynamic workflows have
been identified as an open challenge [9]. Dynamic workflows
are scientific workflows that are subject to rapid reuse and ex-
ploration accompanied by continuous adaptation and improve-
ment [9]. They need the ability of adapting the workflow based
on external events such as human interaction and runtime steer-
ing. A typical user interaction would be to adjust data such as
filters or domain-specific parameters based on runtime data and
partial results. Similar to an iterative optimization approach, scien-
tists may keep the workflow running in a loop, doing adjustments
and refinements searching for the best solution as the workflow
execution progresses. This runtime adaptation based on user input
is more efficient than pre-programming all possible data combina-
tions in a loop, which may not be viable in a scientific workflow
due to inherent complexity and unexpected data transformation
behavior. In fact, the expression human-in-the-loop has gained a
lot of interest in dataflow analytics. According to [10] “there re-
main many patterns that humans can easily detect but computer
algorithms have a hard time finding”.

In a previous work [11], we showed the benefits of dynamic
workflows in reduced order models for heat conduction and ge-
netic algorithms. We then started working with bigger problems
such as Uncertainty Quantification (UQ) [12]. Adaptations of the
workflow at runtime in [12] were still hand-made through prove-
nance database queries, but the performance improvements ob-
tained, motivated us to develop specific constructs to support
dynamic workflows. We identified scenarios that can make good
use of dynamic workflows, such as: bioinformatics workflows in-
volving multiple sequence alignment [13] that need to refine the
similarity predefined e-value for a given input dataset running the
same workflow several times; and UQ workflows, which can be
used in several scientific domains. One may foresee a similar sce-
nario in other application areas, e.g. in clustering algorithms, where
scientists need to refine the quantity of data clusters, or in genetic
algorithms, where scientists refine parameters related to crossover
and mutation rates. All these examples require runtime data anal-
ysis and data adjustments to refine initial configurations. Other-
wise, they may increase the experiment data size and complexity

by running all possible alternatives to pick the best after the whole
execution. This manual exploratory approach cannot be done even
at a terabyte scale.

Resubmitting the workflow execution after manually changing
its configuration, as done by scientists today, is labor-intensive and
error-prone. Because of the lack of provenance data along the trials,
they may lose track of what has already been explored and how the
workflow has evolved. To improve this iterative experimental pro-
cess, the user should be able to analyze partial results during exe-
cution and to interfere dynamically accordingly, in the next steps of
the workflow. There are obvious advantages if the whole iterative
process is modeled as a dynamic workflow. However, current itera-
tive approaches do not allow for workflow configuration data to be
adapted and fine-tuned during the execution. They typically have
an iterative specification model that is submitted for execution as
a static plan. Scientists wait until execution ends to analyze results
and provenance data and only then decide if it is necessary to in-
terfere in the workflow data configuration to be further executed.

In this paper, we characterize a fourth iteration type - dy-
namic loops - as a particular type of conditional loops where the
condition of the loop and the data being processed in the loop
may be adapted during the execution. As done today, program-
ming the dynamic iteration with big data management tools [14]
may not be viable due to legacy scientific code complexity and
the requirement for sophisticated provenance querying support.
Dynamic loops have a data-centric iterative specification because
they need to naturally respond to data-driven events. These events
may be data inserts and updates at runtime, which change the con-
dition of the loop in its specification. In other words, conditional
loops need to be dynamic to adapt the workflow based on the ac-
tion of the users when they are steering the execution. To support
the execution of workflows with dynamic loops, we propose a dy-
namic execution model guided by runtime data lineage, a concept
inspired in provenance that keeps track of the dataflow changes in
the loop. Adaptations made by users when they steer the workflow
become part of the dataflow by two algorithms that access the data
lineage structure and triggers the data-driven events. Thus, dy-
namic loops are iterations subjected to adaptations based on user
input and we support it by means of a data-centric, provenance
oriented approach.

Our dynamic loops support follows the algebraic approach for
data-centric scientific workflows [15]. Nevertheless, the original
algebra, defined in [15], only supports counting loops (1), which
is also known as parameter sweeps. It does not support the other
types of iterations such as (2) or (3) neither or adaptations based
on user input in the algebraic expression specification at runtime.
In order to support dynamic loops, we have defined new algebraic
operators and the corresponding formalism to keep the algebraic
properties. Since dynamic loops are the most general iteration type
among the four, when we support dynamic loops in the algebra, we
are now currently supporting all the four types of loops.

We introduce the dynamic loops support without increasing
workflow complexity by following the intuitive concepts of iter-
ative data-centric programming languages. For instance, FAD [16],
a functional database programming language designed for easing
optimization and parallel execution, provides a whiledo second-
order construct for iterating over first-order function calls. Our ap-
proach is also tightly-coupled with a relational data provenance
model that encompasses W3C PROV [17] and stores additional in-
formation such as execution performance and domain data alto-
gether. In order to store domain data, our approach requires the
workflow to be instrumented so that the execution engine can
capture data and store it in the provenance database during run-
time. Consequently, users can query real-time provenance [12,13],
which is essential to support decision making during the dynamic
steering. In [12], for example, a UQ workflow is improved using

Download English Version:

https://daneshyari.com/en/article/424967

Download Persian Version:

https://daneshyari.com/article/424967

Daneshyari.com

https://daneshyari.com/en/article/424967
https://daneshyari.com/article/424967
https://daneshyari.com

