
Future Generation Computer Systems 23 (2007) 904–912
www.elsevier.com/locate/fgcs

Sabotage-tolerance and trust management in desktop grid computing

Patricio Dominguesa, Bruno Sousab, Luis Moura Silvab,∗

a School of Technology and Management, Polytechnic Institute of Leiria, Portugal
b Dep. Engenharia Informática, University of Coimbra, Polo II, 3030-Coimbra, Portugal

Received 19 April 2006; received in revised form 30 November 2006; accepted 5 December 2006
Available online 23 January 2007

Abstract

The success of grid computing in open environments like the Internet is highly dependent on the adoption of mechanisms to detect failures
and malicious sabotage attempts. It is also required to maintain a trust management system that permits one to distinguish the trustable from the
non-trustable participants in a global computation. Without these mechanisms, users with data-critical applications will never rely on desktop
grids, and will rather prefer to support higher costs to run their computations in closed and secure computing systems.

This paper discusses the topics of sabotage-tolerance and trust management. After reviewing the state-of-the-art, we present two novel
techniques: a mechanism for sabotage detection and a protocol for distributed trust management. The proposed techniques are targeted at the
paradigm of volunteer-based computing commonly used on desktop grids.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Desktop grids; Sabotage-tolerance; Trust management; Dependability

1. Introduction

In the past years, several initiatives of desktop grid com-
puting have shown the potential opportunity for exploiting the
idle CPU cycles that can be found in millions of Internet com-
puters. Sound examples include SETI@home, Climatepredic-
tion.net, Einstein@home, among several others [1]. To support
such global computations, there have been some notable ad-
vances in desktop grid middleware, with the emergence of open
source platforms such as BOINC [2] and XtremWeb [3].

The verification of results is an important issue that needs to
be addressed in any volunteer computation. Indeed, hardware
and software mishaps as well as malicious volunteers can
falsify the outcome of computations, rendering the results
useless. Thus, a major concern of middleware tools supporting
volunteer computation is to provide results validation and
sabotage tolerance mechanisms. Since computations are run in
open and non-trustable environments, it is necessary to protect
the integrity of data and to validate the computation results.
Without a sabotage detection mechanism, a malicious user

∗ Corresponding author.
E-mail addresses: patricio@estg.ipleiria.pt (P. Domingues),

bmsousa@dei.uc.pt (B. Sousa), luis@dei.uc.pt (L. Moura Silva).

can potentially undermine a computation that may have been
executing for weeks or even months. Therefore, it is no surprise
that users with computationally demanding applications do not
easily trust open environments, rather preferring to have their
applications executed over more controlled clusters which offer
some reliability and trustability. This means that sabotage-
tolerance is a mandatory issue in desktop grids in order to
make them trustable and dependable. In this paper, we discuss
the existing contributions and we present initial ideas for a
new sabotage-tolerance mechanism targeted at real desktop grid
initiatives.

Along with sabotage-tolerance techniques, it is crucial to
devise protocols for trust management in desktop grids. For
this purpose, low-level techniques are employed to gather
valuable information for the creation and maintenance of local
reputation lists. On top of that, higher level protocols are
needed for globally sharing and maintaining an updated view
of the participants’ reputation. Some trust management systems
have already been proposed in the area of Grid, like the
Grid EigenTrust framework [4] and the EigenTrust system for
P2P networks [5], among some other proposals [6]. However,
these trust management systems do not properly exploit
the computational paradigm of volunteer-based computing.
In this paper, we propose an invitation-based protocol

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.12.001

http://www.elsevier.com/locate/fgcs
mailto:patricio@estg.ipleiria.pt
mailto:bmsousa@dei.uc.pt
mailto:luis@dei.uc.pt
http://dx.doi.org/10.1016/j.future.2006.12.001


P. Domingues et al. / Future Generation Computer Systems 23 (2007) 904–912 905

for trust management targeted at volunteer desktop grids.
The protocol establishes and updates the reputation of the
participants according to their relationship in the volunteer-
chain, using underlying sabotage-tolerance mechanisms to
detect sabotage attempts to undermine the computations, or
simply, computation errors due to faulty hardware.

The rest of this paper is organized as follows: Section 2
describes the state-of-the-art for sabotage-tolerance. Section 3
presents a novel mechanism to detect sabotage attempts, based
on checkpoint comparison. Section 4 describes the state-of-
the-art of trust management in distributed and P2P systems,
while Section 5 outlines our protocol for a reputation system
in desktop grids and explains some of its novelties. Finally,
Section 6 concludes the paper and presents some insights about
future work.

2. Sabotage-tolerance techniques

The master–worker model is the common paradigm for
computing over desktop grids. Under this model, an application
is broken into a large set of individual tasks, with tasks being
distributed for computation by the master (also referred to as
the supervisor) to request workers. After having processed a
task, a worker sends the computed results to the supervisor. In
an open environment like the Internet, it is necessary to assess
the integrity and correctness of the results, since any host can
run a worker.

The taxonomy of the sabotage-tolerance techniques can be
classified in three distinct groups: (a) replication and voting;
(b) sampling; and (c) checkpoint-based techniques. Next, we
review each of these groups.

2.1. Replication and voting

The replication technique is also known as double-check
[7] or as majority voting [8]. It was first deployed on a
wide-scale by the SETI@home project to cope with erroneous
results provoked by faulty hardware and malicious users
eager to claim credits for work not performed [2]. The
technique is based on the replication of individual tasks to
different and preferably non-related workers. When completed,
the results of the N replicas are compared and a majority
voting is applied. The results that do not agree with the
majority are marked as erroneous. If no majority can be
determined (e.g. all results disagree), results are classified
as erroneous and the task needs to be re-executed. N
corresponds to the replication factor, and should be at least
equal to two. The error rate of the replication method is
determined by the replication factor N and by the percentage
of erroneous/malicious volunteers. High levels of redundancy
augment the resiliency at the cost of higher impact in the
overall performance. For instance, the Einstein@home [9]
project diminished its replication factor from 3 to 2 when it
switched to a more computational demanding stage (S5), an
evidence that replication can significantly consume computing
resources. The main benefits of the replication approach are
its support for generic computation and its simplicity, which

eases its implementation — the technique is supported by the
main desktop grid middlewares, and employed by all major
public computing projects. On the contrary, a major weakness
lies in the wasting of resources, since to complete a task, at
least N instances need to be effectively computed. Furthermore,
in computations that produce results sensible to hardware and
software specificities, some further restrictions might be needed
to support replication. For instance, some applications are
extremely susceptible to floating-point implementations, and
the same task run over different machines can yield different
numerical results. A viable workaround is homogeneous
redundancy, upon which replicas of a task are only assigned to
homogeneous systems [11]. Regarding sabotage, the replication
technique can be bypassed by smart colluding saboteurs as long
as they manage to control a majority of replicas of a task. A
more subtle limitation of replication-based validation for public
computing environments is the potentially long interval that
might elapse between the completion of the first result and
the existence of enough results for majority voting. This is
relevant in credit-based projects, where the effort of volunteers
is rewarded through virtual credits. Indeed, credit assignment
for a given task is only performed after the result has been
validated, that is, after a majority of results matched and a
so called canonical result exists. This means that the worker
of the first result might wait a significant amount of time for
receiving its due credits. Although this might be perceived
as an irrelevant issue, credits and the associated tops, where
users are ranked according to their earned credits, are major
motivation factors for volunteers to participate in projects and
thus everything related to credits should be treated carefully to
avoid disgruntled volunteers [23].

2.2. Sampling techniques

Sampling techniques were developed to overcome the
limitations of replication, namely its inefficient usage of
resources. Sampling techniques are proposed under four
different approaches: (a) naı̈ve; (b) quizzes; (c) spot checks with
black lists; and (d) ringers.

(a) Naı̈ve. The naı̈ve sample is a simple technique which uses
probes to test the trustworthiness of participants [7]. Basically,
the supervisor sends some test samples to the participants
and then checks the results sent back by the assessed
workers. However, the technique can be easily compromised by
malicious workers if they are able to distinguish test samples
from real application tasks. Indeed, a malicious worker can
compute correctly the test samples, only faking application
tasks, with its dual behavior possibly going unnoticed. The fact
that test samples are computationally less demanding than real
tasks makes the identification of test samples relatively easy
and thus seriously compromises the usefulness of the technique.
Furthermore, if the test samples are sent separately from the
batch of real tasks, the detection of samples is even easier and
the technique becomes almost useless in a hostile environment,
as occurred in early versions of SETI@home [2].

Du et al. [7] extend the naı̈ve sample technique by proposing
the commitment-based sampling (CBS) approach for strictly



Download English Version:

https://daneshyari.com/en/article/424976

Download Persian Version:

https://daneshyari.com/article/424976

Daneshyari.com

https://daneshyari.com/en/article/424976
https://daneshyari.com/article/424976
https://daneshyari.com

