
Future Generation Computer Systems 38 (2014) 75–91

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Architecture-based design and optimization of genetic algorithms on
multi- and many-core systems
Long Zheng a,b, Yanchao Lu a, Minyi Guo a,∗, Song Guo b, Cheng-Zhong Xu c

a University of Shanghai Jiao Tong University, Shanghai, 200240, China
b University of Aizu, Aizu-Wakamatsu, 965-8580, Japan
c Wayne State University, Detroit, MI 48202, United States

h i g h l i g h t s

• Evaluate different PGA schemes and propose the best one for each architecture.
• General optimization approaches and rules are analyzed and proposed.
• Practical comparisons of GA performance on multi-core and many-core are discussed.
• Besides execution speed, solution quality is also concentrated on and analyzed.
• All work is based on features of architectures, instead of specific GA problems.

a r t i c l e i n f o

Article history:
Received 27 April 2012
Received in revised form
5 April 2013
Accepted 14 September 2013
Available online 10 October 2013

Keywords:
Genetic algorithm
Multi-core
GPU
Accuracy
Architecture
Speedup

a b s t r a c t

A Genetic Algorithm (GA) is a heuristic to find exact or approximate solutions to optimization and search
problems within an acceptable time. We discuss GAs from an architectural perspective, offering a gen-
eral analysis of performance of GAs on multi-core CPUs and on many-core GPUs. Based on the widely
used Parallel GA (PGA) schemes, we propose the best one for each architecture. More specifically, the
Asynchronous Island scheme, Island/Master–Slave Hierarchy PGA and Island/Cellular Hierarchy PGA are
the best for multi-core, multi-socket multi-core and many-core architectures, respectively. Optimization
approaches and rules based on a deep understanding of multi- and many-core architectures are also an-
alyzed and proposed. Finally, the comparison of GA performance on multi-core and many-core architec-
tures are discussed. Three real GA problems are used as benchmarks to evaluate our analysis and findings.

There are three extra contributions compared to previous work. Firstly, our findings based on deeply
analyzing architectures can be applied to all GA problems, even for other parallel computing, not for a
particular GA problem. Secondly, the performance of GAs in our work not only concerns execution speed,
also the solution quality has not been considered seriously enough. Thirdly, we propose the theoretical
performance and optimization models of PGA onmulti-core andmany-core architectures, finding a more
practical result of the performance comparison of the GA on these architectures, so that the speedup
presented in this work is more reasonable and is a better guide to practical decisions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, multi-core processors and many-core GPUs have
entered the mainstream of microprocessor development. The
multi-core and many-core architecture both successfully make
use of Thread Level Parallelism (TLP) to improve the performance
rather than just Instruction Level Parallelism (ILP).

∗ Corresponding author.
E-mail addresses: d8112104@u-aizu.ac.jp (L. Zheng), chzblych@sjtu.edu.cn

(Y. Lu), guo-my@cs.sjtu.edu.cn (M. Guo), sguo@u-aizu.ac.jp (S. Guo),
czxu@wayne.edu (C.-Z. Xu).

When microprocessors use ILP to improve the performance, all
parallel mechanisms are hidden by compilers and the architec-
ture of microprocessors. However with TLP, parallel mechanisms
cannot be hidden. Users have to know about the architecture of
multi-core and many-core systems, and implement their paral-
lel programs explicitly. For example, users need to write multi-
threaded code to improve the parallelism of their programs. For
GPUs, users even have to be familiar with the details of the ar-
chitecture, because they must assign threads to different SMs, use
hundreds of cores efficiently, and consider the choice of different
types ofmemory.Withmulti-core systems, several existing or new
programming models and environments can help users. For ex-
ample, Pthread, OpenMP, Cilk [1], and even MapReduce [2] can be
considered tools to help users implement programs on multi-core

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.09.029

http://dx.doi.org/10.1016/j.future.2013.09.029
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.09.029&domain=pdf
mailto:d8112104@u-aizu.ac.jp
mailto:chzblych@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
mailto:sguo@u-aizu.ac.jp
mailto:czxu@wayne.edu
http://dx.doi.org/10.1016/j.future.2013.09.029


76 L. Zheng et al. / Future Generation Computer Systems 38 (2014) 75–91

systems. GPU-based systems are newer than multi-core systems,
but work has been done in both industry and academia. Users can
use CUDA, OpenCL to interact with hundreds of cores. Recently, a
framework called MARS [3] is proposed, so that MapReduce can
also help to harness the power of many-core GPUs. These systems
do not try to hide the parallelism; they expose it to users, which re-
quires users to know about architectural details and parallelmech-
anisms; otherwise, the systems cannot perform efficiently.

A Genetic Algorithm (GA) is a heuristic to find exact or approx-
imate solutions to optimization and search problems within an
acceptable time; the technique is widely used in business, engi-
neering and science [4–7]. Actually, many real world engineering
problems that solved by GA require quite a long computation time.
Furthermore, GA is integrated in many other applications, and
stands as a key component (such as scheduling) which has a sig-
nificant influence on the overall performance. These facts are the
motivation that multi- and many-core architectures are adopted,
focused and researched [8–11].

Although some transplanting of GAs from CPUs to GPUs has
been done, the lack of understanding of detailed multi-core and
many-core architectures leads to the following shortcomings in the
previous work:

1. Many GA which work on multi-core and many-core systems
are done on a case by case basis, describing how to use multi-
core and many-core systems to accelerate the specific GA
problems. Some work even misunderstands the fundamentals
of implementation on the new architecture. The different GA
problems have more commonalities than differences. Features
of multi- and many-core architectures actually determine
which Parallel GA (PGA) is the best for both execution speed and
solution quality, rather than features of different GA problems.

2. Most work focuses exclusively on the relationship between
the speedup on the multi-core and many-core architecture,
pursuing a fast execution time, but ignoring the solution
quality. SinceGAsmostly find only approximate solutions,more
attention should be paid to solution quality. The relationship
between speedup and architecture should be discussed along
with the solution quality.

3. Most previous work demonstrates the GPU performance by
comparing the execution speed onGPUs to a serial implementa-
tion on CPUs. Although this metric is reasonable, the serial im-
plementation can only use a single CPU core. Now multi-core
CPU is the mainstream. The lack of expressing the speedup of
GPUs compared to multi-core CPUs makes the speedup in pre-
vious work less practical to GA users.

These problemsmotivate us to discuss GAs froman architecture
perspective, to offer a general analysis of GAs on multi-core and
many-core architectures, considering the quality of solutions. We
first introduce the fundamentals of GAs followed by several popu-
lar PGA schemes; then we make an architecture-based analysis of
the different PGA models on multi-core and many-core architec-
tures. The best PGA schemes for multi-core, multi-socket multi-
core and many-core architectures are proposed as well. Also, we
propose some approaches and rules to optimize the performance
of GAs on multi- and many-core architectures. Finally, three real
and widely used GA problems are used as benchmarks, so that our
findings can be validated.

Especially, our work concentrates on features of architectures
which are considered as the key points to improve GA perfor-
mance. Hence our work aims at all kinds of GAs not a specific GA
problem. We consider the GAs from the abstract level of a parallel
model; performance improvements in GA fundamentals – for ex-
ample, migration topology, mutation strategy or selection method
–will not affect our findings. These fundamental GA improvements
can get more performance benefit from the architecture with our

findings. Existing multi- and many-core acceleration work for GAs
mostly aims to reduce the execution time, ignoring the solution
quality. We take the solution quality into account, so that we try
to make GAs get the best solutions in the shortest time, since a so-
lution is what the engineers and researchers who use GAs actually
need. As we propose the best approaches to make GA use multi-
core and many-core architectures, we can make a fairer com-
parison of GA performance between multi-core and many-core.
Besides the speedup of execution time, a speedup with consider-
ation of solution quality is also proposed. The speedup based on
our experimental results is more reasonable and is a better guide
to practical decisions when engineers and researchers use GAs to
solve their problems.

We highlight our contributions compared to previous work as
follows.

1. Analyze the performance of generic GAs on bothmulti-core and
many-core architectures in depth, and proposing the best PGA
scheme and implementation on each architecture.

2. Consider a more reasonable performance metric that combines
the execution speed and the solution quality to compare the
performance of different PGA schemes on different architec-
tures.

3. Propose the theoretical performance and optimization models
of PGA on multi-core and many-core architectures and evalu-
ate themwith three real world engineering problems, finding a
more practical and bias result of the performance comparison
of the GA on these architectures.

The remainder of this paper is structured as follows. Section 2
gives an essential overview of GA. Sections 3 and 4 offer an
architecture-based theoretical analysis of GAs and propose the
best approaches and optimization rules for multi-core and many-
core systems. We evaluate our analysis and findings in Section 5.
Related work is discussed in Section 6. Section 7 summarizes our
findings.

2. Background of GA

Before analyzing GA on multi-core and many-core architec-
tures, we give a quick overview of GAs. In this section, we begin
with a review of species selection and evolution in nature, which
is a good way to understand the fundamentals of GAs. Based on
this, we present several GA schemes for parallel and distributed
computing environments.

2.1. Fundamental of GA

In nature, individuals compete with each other and adapt to the
environment. Only the strongest ones can survive in a tough envi-
ronment. The survivors mate more-or-less randomly and produce
the next generation. During reproduction, mutation always occurs,
which makes some individuals of the next generation better fitted
for the environment.

GAs are heuristic search algorithms that mimic natural species
selection and evolution as described above. The problem that a GA
intends to solve is the tough environment. Each individual in the
population of a GA is a candidate solution for the problem.

A generation of a GA is generated by the following steps—
fitness computation, selection, crossover and mutation. The fitness
computation is the competition of individuals, and can tell which
individual is good for the problem; the selection chooses good
individuals to survive and eliminates bad ones; the crossover mates
two individuals to produce the next generation individuals; and
the mutation occurs after crossover, so that the next generation
can be more diverse. With enough generations, GAs can evolve
an individual that is the optimal solution to the problem. This is
the classic serial GA scheme [12]. Since GAs are so similar to the



Download	English	Version:

https://daneshyari.com/en/article/424988

Download	Persian	Version:

https://daneshyari.com/article/424988

Daneshyari.com

https://daneshyari.com/en/article/424988
https://daneshyari.com/article/424988
https://daneshyari.com/

