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Abstract

The so called “invisible Grid”, transparent to application developers, is still far from being a reality. One reason is that the workflow
model, which emerged as a widely accepted paradigm for high-level composition of Grid applications, is based on a low-level imperative
programming model prone to programming errors. The issue of developing correct (bug-free) Grid applications has not been addressed by the
community.

We propose a new model for building Grid applications based on two programming phases: (1) formal functional specification, written by the
application developer not interested in any Grid-related issues; (2) imperative workflow-based coordination, written by the computer scientist,
which ports and efficiently executes the specification onto the Grid. A correctness checker automatically connects both parts at compile-time and
insures the correct execution of the workflow coordination with respect to the formal specification.

We validate our approach for three scientific applications and show real-world experimental results that demonstrate the scalability of our
coordination model and the fact that the overhead introduced by our correctness checker is insignificant when compared to the latencies exhibited
by the Grid middleware software.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The workflow model has emerged as one of the most
attractive paradigms for programming Grid applications. As
a consequence, significant efforts are taking place currently
in academia and industry to define appropriate languages
that express workflows at a high-level of abstraction,
thus completely shielding the Grid from the application
programmer [7,12,14,19,9]. Despite these solid efforts, we
believe that the current outcomes are still far from fulfilling the
ultimate goal of scientists fof having an invisible Grid, which
they can program with ease and which is error-free.

Typically, Grid workflows are defined as a collection of
off-the-shelf activities or components, interconnected through
control and data flow dependencies into a directed (sometimes
acyclic) graph structure. The control flow dependencies express
the execution order of activities, while the data dependencies
express the communication between activities.
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1.1. Error-prone programming

Similar to Fortran, C, or Java, workflow languages are
based on the imperative model of computation. Imperative
programming is traditionally used in scientific computing due
to its performance advantage. Programs are modelled as a
workflow of instructions that reuse data stores (e.g. registries,
cache, main memory, hard disk, storage systems) through
destructive assignments. A skilful reuse of such stores underlies
the art of achieving high performance, but is at the same time
the most important source of programming errors. A data store
that contains a wrong value during the execution of a program
is often called a bug.

Existing high-level Grid workflow languages are prone
to programming errors at the same low-level of abstraction
as imperative assembly languages. An erroneous or missing
control flow dependency between two activities, a wrong data
flow dependency, or a data port containing a wrong data
package represents a bug.

Functional programming, based on the expression evalu-
ation model, appears to be missing several constructs often
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considered essential to an imperative languages. For example,
in strict functional programming, there is no explicit memory
allocation and no explicit variable assignment. However, these
operations occur automatically when a function is invoked. A
memory allocation occurs to make space for the parameters and
the return value. An assignment occurs to copy the parameters
into this newly allocated space and to copy the return value
back into the calling function. Both operations can only oc-
cur on function entry and exit, so any side effects of function
evaluation are eliminated. By disallowing side effects in func-
tions, the language provides referential transparency. This en-
sures that the result of a function will be the same for a given
set of parameters no matter where, or when, it is evaluated. This
is a big step for insuring the program correctness.

Moreover, functional languages allow for the deployment
of techniques for verifying the program correctness, which are
much more cumbersome when applied to programs written in
imperative languages. Inductive reasoning remains, regardless
of its inefficiency, a powerful technique to establish the
correctness of a recursive function in two steps: (1) The base
cases of the induction correspond to the pre- and postconditions
that make no recursive calls; (2) The inductive step (the beauty)
assumes that the recursive calls work correctly when showing
that a case involving recursive calls is correct.

1.2. Low-level abstractions

Despite the declared goal of producing high-level workflow
languages for building applications, we see the outcomes in
the Grid community are very much similar to the traditional
low-level imperative languages. Sequential programs, written
in popular imperative languages like Fortran, C, or Java, are, in
fact, workflows of instructions. The Grid renames the atomic
unit of work from instruction to component or activity. The
data ports used to communicate information between workflow
activities are, in fact, a different names for data stores or
variables. Data flow dependencies are, in fact, the results of
traditional low-level compiler analysis results of assignment
statements. In addition, to support the effective development
of applications, Grid workflow languages introduce additional
complex control flow constructs like while, for, if, and even
switch. Workflow languages are therefore Turing-complete,
and provide a rich type of system, which could be used to
express any kind of algorithm (such as sorting or graph-
based) at the same level of abstraction as traditional imperative
languages like C, Fortran, or Java.

For example, a broad class of Grid applications are
currently modelled as directed graph-based workflows (see
Section 3) that contain loops. The representation of loops
through for or while constructs is, however, the computer
scientist’s imperative view of applications, oriented towards
high performance. Physicists, in contrast, naturally think and
represent cyclic computations through store-free recursive
mathematical formulas.

1.3. Semantics

The latest trend in the Grid research community advocates
the use of semantic techniques (based on ontologies) to build

Grid applications through automatic composition of off-the-
shelf components. Moreover, the recent movement towards the
Semantic Grid brings up a parallel between the Semantic Grid
and the Semantic Web towards which researchers in natural
language processing in particular, and in Artificial Intelligence
(AI) in general, strive. Such a parallel brings up the issue of
connecting the Grid community to the AI field, to start making
use of tools and techniques that have already been shown to
be useful for exploiting the Semantic Web. One of the most
developed applications of the Semantic Web, which bears a
striking resemblance to the ultimate goal of Grid developers,
is the processing of available knowledge using inference
engines. While different approaches may be applicable for the
construction of inference engines (general logic based inference
engines, higher order logic based, full first order logic based,
description logic, or problem-solving methods), they all share a
common feature: they are based on logic.

While logical languages gained popularity in Europe and
Japan for various AI tasks, in the US the preference has
traditionally been for functional programming languages,
which offer just as powerful a tool for addressing tasks like
semantic analysis and planning. A functional-based approach
allows for an intuitive implementation based on inference rules,
allowing a user to focus on what needs to be done, as opposed
to how to do it (on the Grid), which is the case for imperative
programming languages. We believe that this could help the
transition towards an invisible Grid.

1.4. Outline

In this paper, we propose a new approach for programming
the Grid based on the ideas of run-time checking [22],
program verification, and result checking [3], and two-stage
programming [15]. The model, summarised in Section 2 and
illustrated throughout this paper in the context of a real-
world material science application introduced in Section 3, is
based on a full separation between a purely functional formal
specification (see Section 4) and an imperative workflow-based
coordination (see Section 5) of applications. A correctness
checker, presented in Section 6, links the two parts at
compile-time, and automatically insures that the low-level
workflow coordination is executed correctly with respect to the
mathematical specification. In Section 7, we show a concrete
binding of the coordination model for AGWL [9], that is
an Abstract Grid Workflow Language resembling many other
modern XML-based efforts in the field. In Section 8, we
introduce the ASKALON Grid application development and
computing environment that represents the umbrella project
within which we designed and implemented our approach.
Experimental results discussed in Section 9 illustrate the
scalability of my coordination language, and demonstrates the
fact that the correctness checking overhead introduced by my
model is negligible compared to the latencies of the Grid
middleware software. Sections 10 and 11 present two additional
application case studies for validating my approach. Section 12
compares my work against the most relevant related efforts in
the field. Section 13 summarises the paper contributions and
gives a brief outlook into future research.
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