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h i g h l i g h t s

• We construct a 2D daisyworld model with small-world effect.
• We use different couplings for temperature and daisies.
• We investigate the role of non-local long-range couplings in daisyworld dynamics.
• We examine the homeostasis emergence of daisyworld.
• We analyse the phase transition region in the small-world regime.
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a b s t r a c t

Watson and Lovelock’s daisyworld is a coupled biotic–abiotic feedback loop exhibiting interesting
planetary ecodynamics. Previous studies have shown fascinating spatio-temporal dynamics in a 2D
daisyworld, with the emergence of complex spatial patterns. We introduce small-world effect into such
a system. Even a small fraction of long-range couplings destroys the emergent static pattern formation,
leading to completely coherent periodic dominance as observed in fully-connected graphs. This change
in daisyworld behaviour depends only on the small-world effect, independent of the means by which
they are induced (Watts–Strogatz, Newman–Watts and smallest-worldmodels). The transition fromstatic
patterns in grid worlds to periodic coexisting dominance in small-worlds is relatively abrupt, exhibiting
a critical region of rapid transition. The behaviours in this transition region are a mix of emergent static
spatial patterns and large-scale pattern disruption.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Watson and Lovelock [1] originally proposed the daisyworld
model to demonstrate that a biosphere can regulate a planetary
environment without external guidance, providing mathematical
justification for Lovelock’s well-known Gaia hypothesis [2]. This
homeostasis emerges from the biosphere’s tuning of the planetary
albedo (reflectivity). The original daisyworld was modelled on a
one-point (0D) world. It was subsequently extended to a one-
dimensional (1D) world by Adams et al. [3], to a flat two-
dimensional (2D) world by von Bloh et al. [4] and to a curved
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2D world by Ackland et al. [5] and Ackland and Wood [6].
Daisyworld’s emergent homeostasis has to date been investigated
only in simple connection topologies—regular lattices, in which
all neighbourhoods are isomorphic, with fixed numbers of nearest
neighbours.

However, the graph topologies of the real world are more
complex. Watts and Strogatz [7] in their seminal paper proposed
that real-world graphs lie between regular and random graphs
and are usually highly locally clustered (cliquish), as in regular
lattices, yet have low characteristic path lengths, in which they
resemble random graphs. This property is known as the ‘‘small-
world effect’’. It is found across a wide spectrum of sciences—in
social, biological and technological graphs such as neural networks,
electronic power grids, networks of movie actors [7], the world
wide web [8], scientific collaborations networks [9], and so on.
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The small-world property was first investigated in the pioneer-
ing empirical work of social psychologist Milgram [10]. He showed
that any two randomly chosen people on the planet were likely to
be linked by a chain of six intermediate acquaintances. His point
has been widely accepted, and is referred to as the ‘‘small-world
phenomenon’’ (more popularly known as the ‘‘six degrees of sepa-
ration’’). More precisely, the underlying social graph is a superpo-
sition of high local clustering and short global chains, possessing
the small-world property.

Watts and Strogatz [7] (WS) in their ground-breakingwork first
modelled the small-world effect by randomly rewiring a fraction
of the edges of regular lattices. This drastically decreased the
diameter of the graph (the longest shortest path between two
vertices). Other variants exhibiting the small-world effect include
the Newman–Watts (NW) model of Newman and Watts [11] and
the Smallest World (SW) model of Dorogovtsev and Mendes [12].

Since a small-world graph realises high local clustering andhigh
connectivity simultaneously, it exhibits properties from regular
lattices and random graphs: with regular lattices, it shares local
coherence, while with random graphs, it shares rapid diffusion.
Although the detailed differences from regular lattices may be
small, it can share interesting properties of these two opposed
topologies.

In turn, the structural properties of graphs exhibiting small-
world effects can have dramatic effect on the dynamics of systems
acting on them. Well known examples include the dynamics of
epidemics, biological evolution and of diffusion processes. For
further reading, see Boccaletti et al. [13].

Motivation. In planetary ecodynamics, some species have a mix
of local and global dispersal patterns – for example, coconuts [14]
or shellfish [15] – which can dramatically alter their ecological
behaviour. In general, in a fixed geosphere, dispersion reduces the
likelihood of global extinction of species. However in daisyworld
(and according to the Gaia hypothesis, in the real world), the
geosphere is not fixed—there is feedback from the biosphere to
the geosphere. How do such long-range connections affect the
behaviour of a daisyworld? Do they exhibit homeostasis more or
less likely?

Contribution of our work. This work is partly an extension of
Punithan et al. [16]. We have framed the daisyworld model based
on two types of interactions: local couplings using Moore neigh-
bourhood model; and non-local long-range connections (short-
cuts) randomly inserted in the underlying lattice according to a
specified probability. For the insertion of the long-range connec-
tions, we used three different models: WS, NW and SW (see Sec-
tion 2 for details). We analyse the role of the non-local couplings
in the spatio-temporal dynamics and investigate the emergence of
homeostasis in a daisyworld with such small-world graph struc-
tures.

In the previous daisyworld literature [17, Section 3], the con-
nectivities for both species (black and white), and for the environ-
mental resource (temperature), are the same—local connections.
In our model, we use different connectivity topologies. Black and
white daisies disperse via both local and long-range connections
(by water, air, animal pollinator transport etc.), while temperature
diffuses only locally.

Foreshadowing the results, we found that even a few long-
range connections dramatically affect the population dynamics of
daisyworld, but it is still able to self-regulate the environment
(temperature) and thus sustain life (daisies). The introduction of
non-local long-range connectivities into a highly locally structured
daisy population lattice permits the rapid and homogeneous
spread of a dominant daisy type, invading the whole coexisting
daisyworld. Although the proportion of long-range connections is
small, the pattern of interaction is changed from entirely local [18]
to almost entirely global.

If a system exhibits such a dramatic change in its characteristic
properties under the perturbations of small changes in some of its
model parameters, the system is said to have changed phase. Such
phase transitions are very common in physical, social and technical
systems. For example, amagnet exhibitsmagnetism up to a critical
temperature, above which the magnetic properties are suddenly
destroyed. In the same way, when we perturb the connectivity
of our daisyworld graph while leaving all other parameters fixed,
it exhibits periodic behaviour while the unaltered system forms
static self-organised patterns. One focus of this study is the
behaviour in this phase transition.

Outline of the paper. In Section 2, we introduce background
material on daisyworld and graph models including small-
world graphs. Section 3 describes our specific implementation,
combining these ideas. The experimental results of daisyworld
simulations ondifferent formsof small-world graphs are presented
in Section 4. Discussions based our results and conclusions are
represented in Sections 5 and 6 respectively.

2. Background

2.1. Daisyworld model

Daisyworld is a complex interplay of life (black and white
daisies) and its environment (temperature). The petal colours
(phenotype) of ‘temperature-sensitive’ daisies influence the plan-
etary albedo (environment-altering trait) via automatic feedback
processes. The temperature in turn differentially regulates the
daisies’ growth rates, changing the planetary albedo. The combined
effect of such positive and negative couplings results in global en-
vironmental regulation. This emergence leads to an infinite dance
of black and white daisies.

The daisyworld system can be constructed on different
topologies, for which we now describe some of the background.

2.2. Graph models

A graph is a compact mathematical representation of the
connectivity topology of complex systems. It consists of an ordered
pair of disjoint sets G = ⟨V (G), E(G)⟩ such that V (G) ≠ φ and
E(G) ⊆ {{u, v} : u ≠ v ∈ V (G)}, i.e. E(G), the edge set, is a
subset of the set of the unordered pairs of a nonempty vertex set
V (G) [19], implying that |E(G)| ≤

 n
2


; n = |V (G)|.1 G is called

regular (k-regular) if each of its vertices has the same degree (k). It
is fully connected (k = n − 1) if |E(G)| =

 n
2


and random if kn/2

out of all possible
 n
2


edges are chosen uniformly randomly with

equal probability [20].

2.3. Graph statistics

The most commonly used metrics to characterise structural
properties of graphs are the characteristic path length and the
clustering coefficient.

Characteristic path length (L̄). The characteristic path length is a
measure of the global structure of a graph (how well connected a
graph is). In general, a path (a walk in which no vertex is visited
more than once) from a vertex u to another vertex v in a graph
G is a sequence of edges that are traversed from u to v with no
edge traversed more than once (trail). There may exist more than
one path from u to v in G. The length of a path is the number
of edges. The shortest path (or geodesic) between two vertices
u and v is the path between them with the smallest length. The

1 In graph theory, the size of the graph is generally denoted by |E(G)| and the
order of the graph by |V (G)|; however in complex systems theory, the size usually
refers to the vertex set |V (G)|.
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