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Abstract

Metaschedulers in the Grid need dynamic information to support their scheduling decisions. Job response time on computing resources, for
instance, is such a performance metric. In this paper, we propose an Instance Based Learning technique to predict response times by mining
historical performance data. The novelty of our approach is to introduce policy attributes in representing and comparing resource states, which
are defined as the pools of running and queued jobs on the resources at the time of making predictions. The policy attributes reflect the local
scheduling policies and they can be automatically discovered using genetic search. An extensive empirical evaluation is conducted to validate our
technique using real workload traces, which are collected from the NIKHEF production cluster on the LHC Computing Grid and Blue Horizon
in the San Diego Supercomputer Center (SDSC). The experimental results show that acceptable prediction accuracy can be achieved, where the
normalized average prediction errors for response times are ranging from 0.57 to 0.79.
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1. Introduction

Large scale Grids typically consist of many heterogeneous
and geographically distributed resources. As an example, the
LHC Computing Grid (LCG) currently has approximately
140 sites in 34 countries with a total number of 12,516
CPUs and 5 petabytes’ storage. Metascheduling in such an
environment raises a serious challenge and many scheduling
algorithms, architectures and systems have been proposed [1,3,
14]. Scheduling at the meta level differs from local scheduling
in that metaschedulers do not have control over the resources.
Instead, metaschedulers make decisions on behalf of users and
hand jobs over to the local resource management systems.
There is one common aspect in this process despite the
diversity of Grid scheduling instances, namely, the goodness
of scheduling decisions depends heavily on the quality of
information available about the resources. There is relatively
static information such as machine types, number of CPUs
and storage capacity. This can be obtained by monitoring
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tools via Grid information services. There is also more
dynamic information such as job response times. This type of
information is very important to support the metascheduling
decisions, but is not available by only monitoring. It must be
predicted based on historical data recorded on the resources.

The main theme of this paper is about job response time
predictions on computing resources, and our approach is based
on mining the historical performance data. We believe that
knowledge about local scheduling policies can be discovered
in the data and this knowledge can be utilized in predictions.
Techniques from statistical data mining can help us in getting
there. Specifically, we investigate how an Instance Based
Learning technique is applied in predictions, how a genetic
algorithm is used for parameter optimization, and elaborate our
design choices. We focus on resources such as space-shared
parallel supercomputers, clusters, and study workload traces
recorded on them.

The rest of the paper is organized as follows: Section 2
introduces job response time predictions and discusses the
related work in this area. Section 3 defines job similarity and
resource state similarity, which are the two key concepts in
our technique. Section 4 elaborates the IBL-based prediction
algorithm, including the distance function and the induction
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Table 1

Representative job attributes recorded in workload traces

Abbreviation Job attribute Type Abbreviation Job attribute Type Abbreviation Job attribute Type

g Group name Nominal n #CPUs Numeric m Used memory Numeric
u User name Nominal r Req. run time Numeric rm Req. memory Numeric
q Queue name Nominal tod Arrival time Numeric t Run time Numeric
e Job name Nominal s Exit status Numeric qt Queue wait time Numeric

models. Section 5 describes the design and construction of
the genetic algorithm for parameter optimization. Section 6
presents the empirical evaluation and analysis using real
workload traces. Conclusions and future work are discussed in
Section 7.

2. Response time predictions

Response time of a job is defined as the time elapsed from
its submission till completion on a resource. Two metrics need
to be estimated for the response time: one is how long a job
executes on the resource (application run time), the other is
how long the job waits in the queue before starting (queue wait
time). A popular approach is to derive predictions from similar
observations in the past, and the historical data available in site
workload traces naturally serves as the basis for such a study.

Techniques have been proposed for predicting application
run times using historical information. In [11] “templates of
attributes” are defined for categorizing historical jobs and
statistical techniques like mean or linear regression are applied
to generate predictions. In [6] Instance Based Learning (IBL)
techniques are investigated for run time predictions. IBL uses
historical data “near” the query point to build a local model for
approximation. A proper distance metric has to be defined to
measure the distances between data instances. In fact the IBL
algorithm is a generalization of the template approach, in which
distances are simplified to binary values (belong or not belong
to a specific category).

For queue wait times, the basic idea of most techniques is
based on scheduler simulation. In [13] scheduling algorithms
like FCFS, LWEF, and backfilling are simulated for predicting
queue wait times, where application run times are estimated
using the template approach. In [7] simulation is also used to
predict queue wait times for a policy-based scheduler called
Maui. Although relatively better prediction accuracy can be
achieved, several major drawbacks remain for the simulation
approach. Firstly, it cannot meet the real-time requirements
in the Grid brokering process. Secondly, it is not scalable
since there are different types of local scheduling systems
deployed on different Grid sites. Some sites have schedulers
with combinations of basic scheduling algorithms, and most
sites enforce different kinds of policies in their own fashion.

As an alternative, we are trying to derive queue wait
times also from historical observations. Our assumption is that
“similar” jobs under “similar” resource states would most likely
have similar waiting times, given that the scheduling algorithm
and policies remain unchanged for a reasonable amount of time.
Similar ideas have been studied in [12], in which summary
statistics about the resource state (e.g. free CPUs, number

of running jobs) is used as attributes for defining templates.
The template approach to estimate application run times as
described above can be applied similarly for waiting times. Our
work distinguishes from it in two aspects: firstly, we introduce
attributes that reflect scheduling policies to represent resource
states in a more fine-grained level for similarity comparison,
and these policies can be automatically discovered via genetic
search. Secondly, we use Instance Based Learning as the
common framework for both application run times and queue
wait times. We elaborate our approach in the following sections.

3. Similarity definition

The key problem is how to define similarity to compare
jobs. Table 1 shows the representative job attributes recorded in
workload traces. For job run times, some of these attributes can
be naturally used for similarity definition. For queue wait times,
however, new attributes need to be defined as the waiting time
of a job is typically a result of interactions among the job, other
jobs on the resource, and the local scheduler. We introduce the
definitions for job similarity and resource state similarity as
follows.

3.1. Job similarity

Seven recorded attributes are considered to define job
similarity. They are “group name” (g), “user name” (u), “queue
name” (q), “job name” (e), “number of CPUs” (n), “requested
run times” (r), and “arrival time of day” (tod). Depending on the
availability, any potentially useful attribute such as node speed
and executable arguments can be added to this list. The pre-
selected attributes are mostly self-explanatory by their names
and they have two main types, namely, nominal (g, u, g, €) or
numeric (n, 1, tod). In the Instance Based Learning algorithm
described later, similarity between jobs is formulated by a
distance function composed of attributes. Jobs with smaller
distances are considered more similar. For instance, jobs from
the same group, say “bioinfo”, and with the same executable
name called “proteinmatch” will have smaller distances than
those who have nothing in common, and therefore have a higher
chance of being used for predictions of the same kind. To make
a good distance function, we employ a genetic search to weight
attributes according to the metric being predicted (application
run time or queue wait time).

3.2. Resource state similarity

We define a resource state as the pool of running and queued
jobs on the resource at the time of making a prediction. More
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