
Future Generation Computer Systems 22 (2006) 88–101

A middleware architecture to facilitate distributed programming
DAROC: Data-Activated Replicated Object Communications

Brian M. Stack, Gene Hsiao, Stephen F. Jenks∗

University of California, 444E Engineering Tower, Irvine, CA 92697-2625, USA

Received 6 December 2003; accepted 6 December 2003
Available online 25 December 2004

Abstract

Programming distributed computer systems is difficult because of complexities in addressing remote entities, message han-
dling, and program coupling. As systems grow, scalability becomes critical, as bottlenecks can serialize portions of the system.
When these distributed system aspects are exposed to programmers, code size and complexity grow, as does the fragility of the
system. This paper describes a distributed software architecture and middleware implementation that combines object-based
blackboard-style communications with data-driven and periodic application scheduling to greatly simplify distributed program-
ming while achieving scalable performance. Data-Activated Replication Object Communications (DAROC) allows programmers
to treat shared objects as local variables while providing implicit communications.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Middleware; Distributed system; Data-activated; Blackboard

1. DAROC at a glance

The Data-Activated Replication Object Communi-
cations (DAROC) approach empowers programmers
to be able to write components of distributed sys-
tems without being distributed systems experts, while
leaving the configuration of mission-critical systems
to architects educated in design complexities and pit-
falls of such systems. When writing an application

∗ Corresponding author. Tel.: +1 949 824 9072;
fax: +1 949 824 3203.

E-mail addresses: stackbr@hotmail.com (B.M. Stack),
gene@ucsd.edu (G. Hsiao), sjenks@uci.edu (S.F. Jenks).

in DAROC, programmers are able to simply access
the objects they want without having to be concerned
with the objects’ locations. Programmers have ac-
cess to both the data members and the member func-
tions associated with the object. For example, the
following simple code fragments show how to ac-
cess a member value in a temperature object in a
simulation:

Data member usage:
$temperature → current temp;
Member function usage:
$temperature → convert to celsius();

0167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.12.025

B.M. Stack et al. / Future Generation Computer Systems 22 (2006) 88–101 89

Logic usage:
if($temperature → currrent temp > 100)
$temperature → current temp = 100.

The ‘$’ symbol is used by the DAROC parser to
wrap objects in DAROC code. Code written to use
DAROC is normal C++ code that accesses local vari-
ables and distributed objects in similar ways. The ad-
dition of the ‘$’ notation tells the DAROC toolkit to
add code to manage the distributed nature of the object
without letting that distributed nature affect the pro-
grammer. The DAROC middleware handles distribu-
tion of objects and activation of subscribed applications
without any explicit communications or scheduling op-
erations in the application code.

2. Motivation

Distributed software is normally inherently more
complex than normal, sequential, monolithic software.
The complexity arises from local issues, like buffer and
concurrency management, to network-centric prob-
lems of naming, addressing, and message passing. Mid-
dleware solutions, like CORBA and others, have been
developed to abstract or hide some of the communica-
tion details, but the distributed nature of the system is
often still exposed and some complexity and overhead
are generally associated with such approaches. Devel-
opers must consider aspects such as communications
and scheduling in addition to the functional algorithm
of the code they are writing. For example, if a middle-
ware solution provides a remote procedure call (RPC)
mechanism, the developer must choose between block-
ing and non-blocking calls, and if non-blocking, worry
about buffer usage and synchronization upon comple-
tion. If, instead, the communication approach is mes-
sage based, the programmer must compose the mes-
sage, send it, receive the reply, and decode the reply
message. All of this work is in addition to the required
implementation of the function the program or module
is intended to perform.

The concepts behind DAROC arose from the goal
of eliminating the burden of communications and
scheduling from the application programmer while
maintaining performance and scalability of the sys-
tem. By giving programmers the view of communicat-
ing through shared objects, very natural interactions
between programs are facilitated. With the introduc-

tion of the single-writer rule and activation based on
data changes from data-flow and data-driven systems,
distributed systems issues such as race conditions and
explicit scheduling are eliminated. While the single-
writer rule for data objects (DO) may be seen by some
as a significant constraint on expressiveness, it elim-
inates behavior that limits scalability or would cause
significant confusion or overhead to manage.

Because the application programmers are simply
reading and writing data objects, their programs are
logically decoupled from one another through their
interfaces. If timing constraints require tight tempo-
ral coupling between two programs, the system engi-
neer can allocate both to the same node, where their
shared objects are implemented efficiently through
shared memory. If they can execute on separate nodes,
the DAROC runtime system handles object replication
transparently over the network. Neither case requires
any modification to the application program; thus, the
functional behavior of the programs in the system re-
mains the same.

DAROC borrows the central concept from the black-
board model, specifically that programs communicate
through shared data (objects, in this case) on a logically
shared medium. DAROC differs from conventional
blackboards because of the addition of data-driven
activation (or periodic activation, if appropriate to
the application). This eliminates any notion of and
need for a centralized controller and greatly enhances
the scalability of the system. By pushing scheduling
decisions out to the local processors and as close to the
distributed programs as feasible, there is no central bot-
tleneck. If programs are activated by changes in data,
they will activate on appropriate state changes. If they
are periodic, they see the current system state on the
blackboard when they run. This combination supports
the composition of significant distributed systems.

These specific goals help DAROC reach the overar-
ching goals below:

• Reduce software development costs, error-
proneness, and inflexibility associated with distri-
buted systems applications.

• Reduce code complexity so that the “average” pro-
grammer is able to build distributed systems.

• Provide a tool to better prepare students for the ever-
growing need in the job market for experienced dis-
tributed systems programmers.

Download English Version:

https://daneshyari.com/en/article/425051

Download Persian Version:

https://daneshyari.com/article/425051

Daneshyari.com

https://daneshyari.com/en/article/425051
https://daneshyari.com/article/425051
https://daneshyari.com

