
Future Generation Computer Systems 22 (2006) 123–157

Using B SP and Python to simplify parallel programming

Konrad Hinsena,∗, Hans Petter Langtangenb, Ola Skavhaugb, Åsmund Ødeg̊ardb

a Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orleans Cedex 2, France
b Simula Research Laboratory (SRL), P.O. Box 134, 1325 Lysaker, Norway

Available online 3 March 2004

Abstract

Scientific computing is usually associated with compiled languages for maximum efficiency. However, in a typical application
program, only a small part of the code is time-critical and requires the efficiency of a compiled language. It is often advantageous
to use interpreted high-level languages for the remaining tasks, adopting a mixed-language approach. This will be demonstrated
for Python, an interpreted object-oriented high-level language that is well suited for scientific computing. Particular attention
is paid to high-level parallel programming using Python and the BSP model. We explain the basics of BSP and how it differs
from other parallel programming tools like MPI. Thereafter we present an application of Python and BSP for solving a partial
differential equation from computational science, utilizing high-level design of libraries and mixed-language (Python–C or
Python–Fortran) programming.
© 2004 Published by Elsevier B.V.

Keywords: BSP; Python; Parallel programming

1. Introduction

Scientific computing has some specific require-
ments that influence the choice of programming tools.
The most outstanding property of scientific computing
is its explorative nature: although some standard meth-
ods are used over and over again, they are used in differ-
ent combinations every time, and often it is necessary
to add custom algorithms and programs to a collection

∗ Corresponding author.
E-mail addresses: hinsen@cnrs-orleans.fr (K. Hinsen),

hpl@simula.no (H. Petter Langtangen), skavhaug@simula.no
(O. Skavhaug), aasmundo@simula.no (Å. Ødeg̊ard)

of well-established standard code. Although the litera-
ture on scientific computing may leave the impression
that all that matters are efficient number-crunching and
visualization methods, the day-to-day work of a com-
putational scientist involves a lot of interfacing, file
format conversion, bookkeeping, and similar tasks, of-
ten made difficult by bad user interface design and lack
of documentation. These lengthy and unattractive tasks
often discourage scientists to pursue a potentially inter-
esting idea. Good programming tools can thus make a
significant contribution to good computational science.

High-level languages can help in several ways. At
the simplest level, they can be used to write all tools that
are not time-critical, such as simple analysis programs,

0167-739X/$ – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.future.2003.09.003



124 K. Hinsen et al. / Future Generation Computer Systems 22 (2006) 123–157

file format converters, etc. As a general rule, high-level
languages are better suited for I/O- and text-oriented
tasks than the standard low-level programming lan-
guages used in scientific computing: Fortran, C, and
C++. However, as this paper will show, they can be
useful in number-crunching applications as well, mak-
ing the programs easier to develop and use. The key
to these applications is mixed-language programming,
i.e., combining a high-level and a low-level language
in order to get the best of both worlds.

To avoid misunderstandings, an explanation of the
term “high-level” is in order. Most of all, it implies
no judgment of quality. High-level languages are by
definition those whose constructs and data types are
close to natural-language specifications of algorithms,
as opposed to low-level languages, whose constructs
and data types reflect the hardware level. With high-
level languages, the emphasis is on development con-
venience, whereas low-level languages are designed to
facilitate the generation of efficient code by a com-
piler. Characteristic features of high-level languages
are interactivity, dynamic data structures, automatic
memory management, clear error messages, conve-
nient file handling, libraries for common data manage-
ment tasks, support for the rapid development of graph-
ical user interfaces, etc. These features reduce the de-
velopment and testing time significantly, but also incur
a larger runtime overhead leading to longer execution
times.

We remark that what is called “high-level” in this
paper is often referred to as “very high level”; different
authors use different scales. Many people also use the
term “scripting languages”.

The high-level language used as an example in this
paper is Python[7], a language that is becoming in-
creasingly popular in the scientific community. Al-
though other suitable languages exist and the choice al-
ways involves personal preferences, Python has some
unique features that make it particularly attractive: a
clean syntax, a simple yet powerful object model, a
flexible interface to compiled languages, automatic In-
terface Generators for C/C++ and Fortran, and a large
library of reusable code, both general and scientific. Of
particular importance is Numerical Python[6], a library
that implements fast array operations and associated
numerical operations. Many numerical algorithms can
be expressed in terms of array operations and imple-
mented very efficiently using Numerical Python. More-

over, Numerical Python arrays are used at the interface
between Python and low-level languages, because their
internal data layout is exactly the same as a C array. We
will in this paper adopt the widely used term NumPy
as a short form of Numerical Python.

The outline of this paper is as follows. Section2dis-
cusses two different programming styles for utilizing
high-level languages for scientific computations. We
then turn to the topic of high-level parallel computation,
using the BSP model, in Section3. This simple model
of parallel computing, in combination with Python,
enables communication of high-level data types, and
eliminates the risk of deadlocks often encountered in
other parallel computing tools like MPI and PVM. Sec-
tion4describes how to implement a parallel partial dif-
ferential equation simulator, using Python and BSP. In
this section, we also show how Python can be extended
by migrating time-critical functions to tailor-made C
and Fortran code. We then run some numerical bench-
marks against similar Matlab and C code to quantify the
loss of efficiency by using Python and BSP for simpli-
fied, high-level parallel computing. The final section
summarizes the findings and states some concluding
remarks.

2. High-level language programming styles

There are basically two ways of utilizing a high-level
language like Python in scientific computing. Either we
equip an external application or library with a Python
interface, or we create a new application from scratch in
Python and migrate time-critical operations to Fortran
or C. These two approaches are described next.

2.1. Python interfaces to existing numerical codes

A typical situation in computational science is the
following: an existing program contains all the relevant
methods, but its user interface is cumbersome, I/O facil-
ities not sufficient, and interfacing with other programs
could be easier. Another common case is the existence
of a library of computational algorithms which is used
by relatively simple application programs that are con-
stantly modified. In this case, modification and testing
of the applications often take a significant amount of
time.



Download English Version:

https://daneshyari.com/en/article/425054

Download Persian Version:

https://daneshyari.com/article/425054

Daneshyari.com

https://daneshyari.com/en/article/425054
https://daneshyari.com/article/425054
https://daneshyari.com

