
Future Generation Computer Systems 29 (2013) 1140–1151

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scheduling linear chain streaming applications on heterogeneous systems
with failures
Anne Benoit a, Alexandru Dobrila b, Jean-Marc Nicod b, Laurent Philippe b,∗

a ENS Lyon, Université de Lyon, LIP laboratory (ENS, CNRS, INRIA, UCBL), France
b FEMTO-ST Institute, UMR CNRS/UFC/ENSMM/UTBM, Besançon, France

a r t i c l e i n f o

Article history:
Received 1 September 2012
Received in revised form
13 December 2012
Accepted 21 December 2012
Available online 16 January 2013

Keywords:
Heterogeneous computing
Scheduling
Throughput maximization
Failure
Streaming applications
Complexity results
Linear programming

a b s t r a c t

In this paper, we study the problem of optimizing the throughput of streaming applications for heteroge-
neous platforms subject to failures. Applications are linear graphs of tasks (pipelines), with a type associ-
ated to each task. The challenge is to map each task onto one machine of a target platform, each machine
having to be specialized to process only one task type, given that every machine is able to process all the
types before being specialized in order to avoid costly setups. The objective is to maximize the through-
put, i.e., the rate at which jobs can be processed when accounting for failures. Each instance can thus be
performed by any machine specialized in its type and the workload of the system can be shared among a
set of specialized machines.

For identical machines, we prove that an optimal solution can be computed in polynomial time.
However the problembecomesNP-hardwhen twomachinesmay compute the same task type at different
speeds. Several polynomial time heuristics are designed for the most realistic specialized settings.
Simulation results assess their efficiency, showing that the best heuristics obtain a good throughput,much
better than the throughput obtained with a random mapping. Moreover, the throughput is close to the
optimal solution in the particular cases where the optimal throughput can be computed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we address the issue of mapping a linear chain
of tasks that processes a flow of jobs on heterogeneous resources
subject to failures. Note that the work can be extended to themore
general case when the throughput is not preserved all along the
chain, i.e., the output throughput of the tasks of the pipeline may
be smaller than their input throughput. This may arise for instance
in streaming applications, either because the task operates some
kind of selection on the input data, or when the task is not able to
compute the output, for instance because of failures. So we rather
consider the issue of task failures than machine failures.

A streaming application is composed of a flow of elementary
jobs (job instances of the same size). Each of these elementary jobs
is in turn composed of tasks, linked by precedence constraints.
Thus, the platform must continuously execute instances of
elementary jobs. The objective is to map the tasks onto a
computational platform, consisting of several resources, in order to
optimize the job flow through the platform. The goal is therefore to
maximize the number of job output per time unit (the throughput),

∗ Corresponding author. Tel.: +33 3 81 66 66 54; fax: +33 3 81 66 64 50.
E-mail addresses: Anne.Benoit@ens-lyon.fr (A. Benoit),

alex.dobrilla@gmail.com (A. Dobrila), Jean-Marc.Nicod@femto-st.fr (J.-M. Nicod),
Laurent.philippe@femto-st.fr (L. Philippe).

or equivalently, to minimize the time between two output jobs
(the period). The problem is rather simple when the resources
are homogeneous, but becomes more complex when considering
heterogeneous platforms. The originality of our work is that we
assume that the flow reduction may be linked to the tasks and/or
to the processing resources.

The paper is organized as follows. We first define more
precisely the context and we give an overview of related work
in Section 2. Then we present the framework, define the failure
model and formalize the optimization problems in Section 3. An
exhaustive study on the complexity of these problems is provided
in Section 4: we exhibit some particular polynomial problem
instances, we prove that the remaining problem instances are NP-
hard, and we propose some linear programming formulations to
solve sub-problems. In Section 5, we design a set of polynomial-
time heuristics to solve the most general problem instance. In
Section 6, we conduct extensive simulations to assess the relative
and absolute performance of the heuristics. Finally, we conclude in
Section 7.

2. Context and related work

In the past years, much attention has been paid to workflow
applications on the grid and several workflow management
systems facilitate their execution on the computing resources [1,2].

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.12.015

http://dx.doi.org/10.1016/j.future.2012.12.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:Anne.Benoit@ens-lyon.fr
mailto:alex.dobrilla@gmail.com
mailto:Jean-Marc.Nicod@femto-st.fr
mailto:Laurent.philippe@femto-st.fr
http://dx.doi.org/10.1016/j.future.2012.12.015


A. Benoit et al. / Future Generation Computer Systems 29 (2013) 1140–1151 1141

Fig. 1. Application example.

We focus in this paper on linear chain streaming applications,
executed on computing grids. In this case, the resources are
distributed, heterogeneous, and may not be reliable enough to
assume that the failure rate can be ignored in themapping strategy.

From the application point of view, we deal with coarse-grain
streaming applications. Applications are a linear graph of tasks
(pipeline) with a type associated to each task. In these streaming
applications, a series of data enters the pipeline and progresses
from task to task until the final result is computed. Examples of
such applications are stream-processing applications composed of
processing elements as in [3], or pipelined query operators with
precedence constraints as in [4], or application based on stream
programming as in [5]. An illustrating example of a streaming
application is an image processing application as presented in [6].
A stream of intra-vascular ultrasound images are captured by
a transducer at a specific rate and sent to the resources to be
processed before being displayed (see Fig. 1). A similar application
is the Synthetic Aperture Radar (SAR) [7], which creates 2D or
3D images from radar signals gathered by a moving sensor. These
images are then used tomake decisions. It is important to note that
for such streaming applications, it is more relevant to optimize the
throughput rather than the total finish time.

The considered resources are typically dedicated execution
resources grouped in a distributed platform, a grid, on which
we process a batch of input data. Each resource of the platform
provides functions or services that are able to handle a task type.
As each task is typed, it can only be processed on a resource that
implements its task type. In the case of computing resources this
model can be illustrated by Software as a Service (SaaS) based
platforms [8]. The considered platforms are heterogeneous as the
resources are usually not uniform and thus the tasks are processed
with different speeds.

Our aim is to efficientlymap and schedule the applications onto
the resources. We target coarse-grain applications and platforms
such that the cost of communications is negligible in comparison to
the cost of computations. In the illustrating example, processing an
image is indeedmuchmore costly than transferring an image. This
is a complex problem (known in the literature as multi-processor
tasks [9,10]) as the considered resources are heterogeneous.
The mapping defines which resource performs which task. So
processing a streaming application on the platform amounts
to enter jobs on the platform and to progress from resource
to resource, following the task chain, until the final result is
computed. After an initialization delay, a new job is completed
every period and it exits the pipeline. The period is therefore
defined as the longest cycle-time of a resource, and it is the inverse
of the throughput that can be achieved. The goal is tominimize the
period, which is equivalent to maximizing the throughput, i.e., the
number of final results that exit the system per time unit. This
approach is different from [4,11] where pipelined query operators
with precedence constraints are ordered to optimize a bottleneck
metric, the slowest stage in the pipeline and the selectivity of the
operators. In our case, the operation order is fixed and we target
the operator mapping on the resources.

Note that optimizing the schedule of a set of tasks on a
heterogeneous platform is complex (NP-hard most of the time), as
we will show later in the paper. Given that the optimization target

in the throughput optimization and that the tasks of a streaming
application remain identical all along the execution, it is worth
to take the time to compute a static assignment before execution
since the execution parameters, and in particular the execution
time of the tasks, do not change during the streaming execution.

Considering platforms such as grids, or clouds, implies to
take failure possibilities into account. Failures cannot be ignored
when applications last for a long time. The failure rate is too
high to assume that no fault will impact the execution. In the
grid context, failures may occur because of the nodes, but they
also may be related to the complexity of the service [12]. So
we consider in our problem that the type of a task affects its
computation requirements and its failure rate. This failure rate
may also depend on the resource itself, platformheterogeneity also
assumes reliability heterogeneity.

Replication is often used to deal with failures in distributed
systems [13,14]. To ensure that a result is output, the same
execution is replicated among several processors. However, a
common property of our target platforms is that we cannot use
replication to overcome the faults. For streaming applications, it
is too costly to replicate each task (maybe several times if we
want a high warranty) and replication shrinks the throughput.
Fortunately, losing a few jobs may not be a big deal; for instance,
the loss of some images in the illustrating examplewill not alter the
result, as far as the throughput is maintained. This failure model is
based on the Window-Constrained [15] model, often used in real-
time environment. In this model, only a fraction of the messages
will reach their destination: for ymessages, only x (x ≤ y) of them
will reach their destination. The y value is called the Window. The
losses are not considered as a failure but as a guarantee: for a given
network, aWindow-Constrained scheduling [16,17] can guarantee
that nomore than xmessageswill be lost for every y sentmessages.

Other researchwork already focuses on streaming applications.
It operates on data sets but most of the time on homogeneous
resources [18]. Other studies as [19,20] target workflow applica-
tion scheduling on grids but more from a practical point of view. A
comprehensive survey of pipelined workflow scheduling is given
in [21] but it does not tackle the fault tolerance issue. In [22] a
computation is considered to be faulty in case where data is lost.
Replication is used to improve the reliability of the system and to
optimize two objective functions, the latency and the reliability.
This is different from the case tackled in this paper as no through-
put change along the pipeline is considered.

In this paper, we therefore solely concentrate on the problem of
period minimization (i.e., throughput maximization), where extra
jobs are processed to account for failures. For instance, if there is a
single task, mapped on a single machine, with a failure rate of 1/2,
a throughput of x jobs per unit time will be achieved if the task
processes 2× x jobs per time unit.

3. Framework and optimization problems

In this section, we define the problems that we tackle. First
we present the application, platform and failure models. Then we
discuss the objective function and the rules of the game before
formally introducing the optimization problems.



Download English Version:

https://daneshyari.com/en/article/425066

Download Persian Version:

https://daneshyari.com/article/425066

Daneshyari.com

https://daneshyari.com/en/article/425066
https://daneshyari.com/article/425066
https://daneshyari.com

