Future Generation Computer Systems 29 (2013) 913-925

Future Generation Computer Systems

B —

Contents lists available at SciVerse ScienceDirect o
FiGICIS!

journal homepage: www.elsevier.com/locate/fgcs ==

Towards transparent and distributed workload management for large scale

web servers

Shengzhi Zhang®*, Wenjie WangP, Haishan Wu¢, Athanasios V. Vasilakos ¢, Peng Liu?

2 The Pennsylvania State University, University Park, PA, USA

b Shanghai Synacast Media Tech. (PPLive) Inc., China
¢ IBM Research - China, Beijing, China

4 Computer Science Department, Kuwait University, Kuwait

ARTICLE INFO

ABSTRACT

Article history:

Received 25 June 2012

Received in revised form

1 October 2012

Accepted 6 October 2012
Available online 30 October 2012

Keywords:

Resource management
Decentralized control
Service level agreement

The rapid expansion of cloud offerings poses fundamental tasks for workload management in a large scale
server farm. In order to achieve satisfactory Quality of Service (QoS) and reduce operation cost, we present
a fully distributed workload management system in a large scale server environment, e.g., cloud. Different
from existing centralized control approaches, the workload management logic hierarchically spreads
on each back-end server and front-end proxy. The control solution is designed to offer both overload
protection and resource efficiency for the back-end servers, while achieving service differentiation based
on Service Level Agreement (SLA). The proposed system can directly work with legacy software stack,
because the implementation requires no changes to the target operating system, application servers, or
web applications. Our evaluation shows that it achieves both overload protection and service classification
under dynamic heavy workload. Furthermore, it also demonstrates negligible management overhead,

satisfactory fault-tolerance and fast convergence.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The typical architecture of server farms usually consists of
multiple tiers of servers, for example, HTTP servers in the front,
proxy tier in the middle, then application and database servers at
the back-end. The HTTP server tier filters out invalid or malicious
requests and forwards legitimate ones to the proxy tier, which
in turn routes these requests to the corresponding application
servers for processing. As the server farm scales to an infrastructure
consisting thousands of network components located in many
separated data centers, efficient workload management becomes a
challenging task to achieve satisfactory QoS and reduce operation
cost. Furthermore, fault tolerance against management component
failure deserves serious attention, since even the slightest outage
may cause immeasurable financial loss and impact customers’
trust. Hence, an efficient and robust management solution is highly
desired for large scale server farms, especially with the rapid
expansion of cloud offerings these days.

Workload management for multi-tier server farms has been
widely studied in the literature, e.g., admission control [1-4], QoS

* Corresponding author. Tel.: +1 814 206 4609.
E-mail addresses: suz116@psu.edu (S. Zhang), wenjiewang@pplive.com
(W. Wang), haishwu@gmail.com (H. Wu), vasilako@ath.forthnet.gr
(A.V. Vasilakos), pliu@ist.psu.edu (P. Liu).

0167-739X/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2012.10.004

management [5-9], overload control [10,11], and novel workflow
scheduling algorithms [12-14]. Although these approaches work
well for centralized deployment, most of them are limited in
managing large scale server farms due to scalability, complexity
and fault tolerance issues. The centralized solutions, usually
designed for an infrastructure with a small amount of proxies and
application server suffers from scalability problems. A common
practice to improve the scalability of the centralized solutions
is to group proxies and application servers into small clusters,
and apply the solution within each cluster instead. However,
such a scheme increases management overheads, e.g., additional
effort to retain load balance and traffic control among clusters, as
well as administrators’ effort to set up and manage each cluster.
Actually, such a scheme also hinders the resource relocation and
dynamic provisioning which are critical in a cloud environment.
Furthermore, the centralized control approach also suffers from
the well-known single point of failure problem. The controlling
component going down would cause the whole cluster to
malfunction, which is quite difficult to identify and resolve in
a large scale server environment, thus hurting QoS. Usually, a
backup solution and smooth transition to the backup solution
should be carefully designed to preserve service assurance and
minimize the QoS penalty, which makes the management issue
further complicated.

In this paper, we propose a decentralized workload manage-
ment system to achieve load balancing, overload protection and

http://dx.doi.org/10.1016/j.future.2012.10.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:suz116@psu.edu
mailto:wenjiewang@pplive.com
mailto:haishwu@gmail.com
mailto:vasilako@ath.forthnet.gr
mailto:pliu@ist.psu.edu
http://dx.doi.org/10.1016/j.future.2012.10.004

914 S. Zhang et al. / Future Generation Computer Systems 29 (2013) 913-925

QoS differentiation in large scale server farms. The control func-
tionality is split and spread among all the servers and proxies,
which perform resource management and traffic control auto-
matically and independently. Specifically, each back-end server
runs a sub-controller, which audits the local resource consump-
tion, e.g., CPU capacity, memory usage, bandwidth availability, etc.
Then, the sub-controller dispatches the available resources as quo-
tas to the proxy tier based on traffic path regulations. The proxy tier
strictly adheres to the resource dispatching decision of each sub-
controller, to avoid overloading the back-end servers. Meanwhile,
each proxy maintains multi-level priority queues for the incom-
ing workloads with different QoS requirements. Based on SLA, the
available resources are further dispatched to different queues to
achieve service differentiation.

The proposed control framework is totally compatible with
a multi-tier large server environment. Our solution does not
depend on accurate modeling of workloads, deep instrumentation
of the controlled system, or any change to the source code
of commodity web applications, server software and the target
operating systems. Thus, it is completely transparent to both
the application servers and web applications, and involves little
deployment effort even in large scale server farms. Driving the
framework with some benchmarks and workload generators,
we demonstrate that in the cloud environment, it is capable of
managing thousands of servers for fundamental and realistic goals,
e.g., overload protection, QoS differentiation and resilience to
system component failure.

The rest of this paper is organized as follows. We introduce
our workload management scenario and overview the proposed
system in Section 2. The details of our control components are
presented in Sections 3 and 4. In Section 5, we evaluate the
framework under various workload, and evaluate the performance
overhead and fault tolerance. Finally, we discuss related work in
Section 6 and conclude in Section 7.

2. Management scenario and design overview

In this section, we start with the description of our man-
agement scenario and corresponding challenges, followed by the
principles of our design. Then we present the overview of our de-
centralized approach with control functionality spreading among
sub-controllers and proxies.

2.1. Management scenarios

Our workload management focuses on the network traffic
bypassing proxy-tier to back-end application servers in the multi-
tier web server architecture. Such an approach can also be ap-
plied to regulate the traffic flow between application servers and
database servers. Our targets are to prevent overloading the critical
resources of application servers, and to retain the QoS differenti-
ation. Although dynamic resource provisioning, e.g., [15-18], can
also work with the temporary workload boost, continuous peak
workloads will run out all available resources. Hence, appropriate
workload admission control must be performed in this scenario.

Fig. 1 shows a typical example of our workload management
scenario, where the HTTP server tier is not shown for conciseness.
Proxy-tier forwards incoming requests to back-end application
servers based on request forwarding path regulation and resource
availability of the servers. The problem of maximizing the resource
usage without overloading can be solved by applying network
flow theory, if global knowledge can be obtained. However, in
large scale server farms with millions of requests flooding into a
pool of proxies and available resources spreading on thousands
of back-end servers, such knowledge is infeasible to be collected
immediately by control components. Instead, each proxy always

has to make traffic admission decisions based on its local view,
which may hurt QoS and cause serious load imbalance.

From another perspective, virtual machine (VM) sharing is
a common practice for efficient usage of cloud resources. We
recognize three levels of resource sharing in our management
scenarios, application instance' sharing, virtual machine sharing, and
physical server node sharing, sorted from the application level to
the bottom machine level. Specially, different proxies can route
service requests to the same application instance for processing
(i.e., application instance sharing); multiple application servers
(e.g., Java Virtual Machine) could run in one virtual machine
(i.e., virtual machine sharing); while multiple virtual machines can
run on a physical server (i.e., physical server node sharing). The
sharing of an upper level resource also indicates the sharing of a
lower level resource. Actually, there is even resource competition
within the same resource sharing level. For instance, requests to
the same application may have different QoS requirements, usually
stated in the SLA.

Due to the complexity of the resource sharing in large scale
serve farms, the resource that one application instance can
consume highly depends on other instance co-existing on the
same physical server. Hence, it is challenging to dynamically make
localized decisions on workload forwarding to achieve efficient
resources sharing and desired QoS. Furthermore, the workload
characteristic of applications may change significantly in a short
period of time especially in cloud, e.g., flash crowd. In response
to such changes, application instance relocation, allocation and
revocation will be performed quickly and frequently.

The above workload dynamics and application placement
management will gradually tangle the resource sharing among
different levels, which further increases the complexity of
the resource management problem. Such mesh-like request
forwarding paths also impose the challenge of dynamically
and precisely estimating the bottleneck resource consumption
on application servers. Accurate modeling of back-end servers
requires deep instrumentation of the corresponding servers,
especially on the application server level. Even with deep
instrumentation, the model may still need a long time to learn the
resource capacity and the characteristics of workloads.

In this paper, QoS requirements are defined to be the
combination of preferential fairness and average response time
assurance. Such a combination implies that resources cannot be
totally granted to the service requests with higher priority in a
system overload scenario. This reflects the management principle
of QoS assurance in practice, particularly for some enterprise
private cloud. Instead of dedicating an abundant amount of
resources for higher priority workloads and starving the lower
priority ones, a certain degree of degradation can be tolerated
in exchange for continuous service of all workloads. The service
provider will have the flexibility to configure the degree of
tolerance by means of business importance for workloads with
different priorities.

2.2. Design principles

Our workload management scenario and the corresponding
challenges require us to design a solution with the following
properties.

QoS assurances. Based on SLA, priority should always be given
to a workload with higher importance. However, upon overload, a
pre-defined level of degradation can be tolerated, that is, a certain

1 We refer to the presence of an application on an application server as an
application instance.

Download English Version:

https://daneshyari.com/en/article/425081

Download Persian Version:

https://daneshyari.com/article/425081

Daneshyari.com

https://daneshyari.com/en/article/425081
https://daneshyari.com/article/425081
https://daneshyari.com

