
Future Generation Computer Systems 60 (2016) 48–66

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scheduling independent tasks on heterogeneous processors using
heuristics and Column Pricing
Christos Gogos a,∗, Christos Valouxis b, Panayiotis Alefragis c, George Goulas c,
Nikolaos Voros c, Efthymios Housos d

a Technological Educational Institute of Epirus, Department of Computer and Informatics Engineering, Arta, Greece
b Ministry of Education, Achaia Branch Office, Patras, Greece
c Technological Educational Institute of Western Greece, Department of Computer and Informatics Engineering, Patras, Greece
d University of Patras, Department of Electrical and Computer Engineering, Patras, Greece

a r t i c l e i n f o

Article history:
Received 30 May 2015
Received in revised form
28 December 2015
Accepted 24 January 2016
Available online 3 February 2016

Keywords:
Heterogeneous processors
Independent tasks
Task scheduling
Heuristics
Mathematical programming
Column pricing

a b s t r a c t

Efficiently scheduling a set of independent tasks on a virtual supercomputer formed by many hetero-
geneous components has great practical importance, since such systems are commonly used nowadays.
Scheduling efficiency can be seen as the problem of minimizing the overall execution time (makespan)
of the set of tasks under question. This problem is known to be NP-hard and is currently addressed us-
ing heuristics, evolutionary algorithms and other optimization methods. In this paper, firstly, two novel
fast executing heuristics, called LSufferage and TPB, are introduced. L(ist)Sufferage is based on the known
heuristic Sufferage and can achieve in general better results than it for most of the cases. T(enacious)PB is
also based on another heuristic (Penalty Based) and incorporates new ideas that significantly improve the
quality of the resulted schedule. Secondly, a mathematical model of the problem is presented alongside
with an associated approach based on the Linear Programmingmethod of Column Pricing. This approach,
which is called Column Pricingwith Restarts (CPR), can be categorized as a hybridmathematical program-
ming and heuristic approach and is capable of solving in reasonable time problem instances of practically
any size. Experiments show that CPR achieves superior results improving over published results on prob-
lem instances of various sizes. Moreover, hardware requirements of CPR are minimal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades technology progress transformed com-
puting power from a property of the few to an asset that can be
used by virtually anybody. Homogeneous systems, which refers
to multiprocessor systems consisting of identical processing units,
were the first wave of systems that was build in order to serve as
a processing infrastructure capable of parallel execution for a set
of tasks. These tasks typically have execution dependencies among
themcaptured in task graphs. The secondwavewas heterogeneous
systems, consisting of several interconnected computers without
common hardware characteristics running under a resource coor-
dination software. Grid computing [1] has been established as the
general term when referring to such systems. Under the promise

∗ Corresponding author.
E-mail address: cgogos@teiep.gr (C. Gogos).

that in a cost effective manner they can execute multiple pro-
cessing tasks of varying complexity, they have become extremely
popular. The problem of task scheduling is critical in homoge-
neous systems and grid computing [2], since substandard task-
processor allocations result to performance losses. For the case
of homogeneous systems, heuristics and techniques mainly origi-
nated fromOperations Researchwere proposed in order to address
the problemof scheduling [3–5]. Likewise, several techniqueswere
proposed for the scheduling problem on grid computing systems
[6–8].

In this paper the scheduling problem addressed is the Hetero-
geneous Computing Scheduling Problem (HCSP), which refers to
independent tasks that should be assigned to processors of various
characteristics under the goal of minimizing the latest task’s fin-
ish time. This value is known as makespan and is usually used as
the performancemetric for scheduling problems. Scheduling prob-
lems are in general NP-Hard [9] and this fact is commonly used
as a justification that exact methods cannot be applied on solv-
ing themwhen problems of considerable size should be addressed.

http://dx.doi.org/10.1016/j.future.2016.01.016
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.01.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.016&domain=pdf
mailto:cgogos@teiep.gr
http://dx.doi.org/10.1016/j.future.2016.01.016


C. Gogos et al. / Future Generation Computer Systems 60 (2016) 48–66 49

Fortunately, this is not the case for all scheduling problems, since
in several cases, problem specific idiosyncrasies can be exploited,
pushing up the limit of problem sizes that can be solved using ex-
act methods. When problem sizes that can be solved using exact
methods equals or exceeds the size of problems with practical im-
portance these methods tend to have a solution quality advantage
over various approximate methods. This seems to be the case with
HCSP and the method CPR that is proposed in Section 5 of this
manuscript.

Makespan might be the most common objective used but it
has to be mentioned that a number of other objectives also ex-
ist such as resource utilization, flow-time and matching proxim-
ity [10]. Resource utilization measures the degree of utilization
of the resources. Flow-time is the sum of the finishing times of
the tasks and can be seen as an indicator of the Quality of Service
(QoS) of the system. Matching proximity measures the proximity
of the schedule to the schedule that assigns each task to the pro-
cessor that can execute it fastest. Each one of the aforementioned
objectives might be optimized independently or a multiobjective
problem might be formulated that targets the simultaneous op-
timization of more than one objectives [11,12]. Nevertheless, the
majority of published work on task scheduling regards makespan
as the most important performance metric and uses it apart from
other metrics for comparisons among produced schedules.

This manuscript is organized as follows. The next section intro-
duces the problem, presents related work and describes in detail
the heuristics Sufferage and Penalty Based (PB) since they form
the base for the novel heuristics LSufferage and TPB that are pre-
sented next. It is argued that LSufferage and TPB can be used as al-
ternatives to already established heuristics for the problem. Next,
a mathematical model of the problem and an associated Column
Pricing approach is presented. The Column Pricing approach com-
bined with some simple heuristics is capable to solve problem
instances of large sizes that would have been impractical to ad-
dress directly with an Integer Programming solver. The next sec-
tion presents experiments that demonstrate the efficiency of the
two new heuristics and the Column Pricing approach across a large
number of knownproblem instances. Finally, conclusions of the re-
search alongside with future directions are presented.

2. Problem description

The problem of assigning tasks to processors and specifying the
order of execution on each processor is referred to as mapping.
In the problem setting of this work tasks are considered to be
independent, meaning that the completion of execution of a task
is not a precondition for the execution of another task. The set
of tasks is usually called meta-task and the goal is to minimize
the makespan of the meta-task. Mapping of the meta-task occurs
before the start of the meta-task execution, so the problem can
be categorized as static scheduling. Furthermore, once a task is
scheduled on a processor this task has to finish its execution
on it, so pre-emptive execution is prohibited. A related problem
that can be found in the bibliography is the Directed Acyclic
Graph (DAG) scheduling problem. In contrast with HCSP, the DAG
scheduling problem assumes a DAG that captures the precedence
constraints and the communication costs that incur when a task
that is scheduled to a processor has to transfer data to another
task that is supposed to be scheduled to another processor [13].
Meta-tasks occur in several real life situations. For example a set
of individual jobs submitted independently for execution to a grid
computing is a meta-task.

2.1. The expected time to compute model

In order to simulate different Heterogeneous Computing en-
vironments and meta-task characteristics the Expected Time to
Compute (ETC) model was used. ETC model was introduced by Ali

et al. [14] and defines three metrics: task heterogeneity, processor
heterogeneity and consistency type. Task heterogeneity refers to
the variation among the execution times of tasks for a given pro-
cessor. Processor heterogeneity refers to the variation of execu-
tion times for a single task across all the processors. Both of them
can be either high or low. The third metric, consistency, assumes
three values: consistent, inconsistent or partially consistent.When
a dataset is consistent thismeans that if a processor executes a task
faster than another processor, then it should execute all other tasks
faster than the other processors. If the previous assertion does not
hold, then the dataset is considered to be inconsistent except for
the cases of semi-consistent datasets where a consistent subset
of processors can be identified among them. The expected execu-
tion times of the tasks are arranged in a matrix called ETC, where
the entry ETC[t, p] is the expected time to compute task t on pro-
cessor p assuming that the time needed to move the executables
and the associated data is also included. These values are supposed
to be known a priori while approaches that can be used in order
to extract them include task profiling and analytical benchmark-
ing. Further details about the ETC model alongside with alterna-
tive computational models for Grid scheduling can be consulted
in [10]. Twelve instances of the ETC model involving 512 tasks and
16 processors were generated in [15] and since then used in sev-
eral papers. Furthermore, 96 much larger problem instances of up
to 8192 tasks and 256 processors, were introduced in [16]. So, a
testbed of public problem instances and associated published re-
sults exist. This testbedwas used in order to assert the performance
of the approaches proposed later in this paper.

2.2. Related work

A non exhaustive list of approaches to HCSP that our research
found includes heuristics [15,17], local search [18,19], Simulated
Annealing [20], Genetic Algorithms (GAs) [21–23], Memetic
Algorithms (MAs) [24,25], Ant Colony Optimization (ACO) [26,27]
and Bee Colony Optimization (BCO) [28]. Among all approaches
found, a parallel version of GA called pµ-CHC [16], running on a
four QuadCore server cluster, reached very good makespan values
close to the theoretical optimums for the same problem instances
that were mentioned in the previous paragraph.

Heuristics might not give optimal results but are often used in
practice due to their low computational cost and ease of imple-
mentation. Several of them are referenced in the bibliography [29]
and one way to categorize them is according to the moment that
they make the decision of scheduling. The resulting categories are
online and batch mode. Online heuristics schedule tasks immedi-
ately upon arrival. For example MCT (Minimum Completion Time)
heuristic assigns each task to the processor that will result to the
earliest completion time for it. On the other hand, batch mode
heuristics schedule each task by exploiting the execution times
known about the other tasks. The following batchmode heuristics:
Min–Min,Min–Max, RC (Relative Cost), PB (Penalty Based) and Suf-
ferage, will be presented next. In all of the algorithms that follow,
T is the set of tasks, P is the set of processors, ETC(t, p) is the esti-
mated time to complete task t ∈ T on processor p ∈ P and EFT(t, p)
is the earliest finish time of task t on processor p given the current
state of assignments that have already been set up to the point of
scheduling task t .

2.2.1. The Min–Min algorithm
Min–Min algorithm is a simple scheduling algorithm that is

reported to consistently produce good results. In each step of
Min–Min a single task is scheduled. This occurs by computing the
earliest finish time (EFT) over all processors of all still unscheduled
tasks in order to schedule the task to the processor that has
the minimum EFT value over all other alternatives. Min–Min



Download English Version:

https://daneshyari.com/en/article/425124

Download Persian Version:

https://daneshyari.com/article/425124

Daneshyari.com

https://daneshyari.com/en/article/425124
https://daneshyari.com/article/425124
https://daneshyari.com

