Future Generation Computer Systems 26 (2010) 654-667

journal homepage: www.elsevier.com/locate/fgcs oz

Contents lists available at ScienceDirect

Future Generation Computer Systems

Ee——
FiGICIS!

R

Design and implementation of the gLite CREAM job management service

Cristina Aiftimiei®!, Paolo Andreetto?, Sara Bertocco?, Simone Dalla Fina?, Alvise Dorigo?,
Eric Frizziero?, Alessio Gianelle?, Moreno Marzolla®*, Mirco Mazzucato?, Massimo Sgaravatto?,

Sergio Traldi?, Luigi Zangrando*®

2 Istituto Nazionale di Fisica Nucleare (INFN), via Marzolo 8, I-35131 Padova, Italy

b Dipartimento di Scienze dell'Informazione, Universita di Bologna, Mura A. Zamboni 7, 1-40127 Bologna, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 4 May 2009

Received in revised form

10 December 2009

Accepted 14 December 2009
Available online 21 December 2009

Job execution and management is one of the most important functionalities provided by every modern
Grid systems. In this paper we describe how the problem of job management has been addressed in
the gLite middleware by means of the CREAM and CEMonitor services. CREAM (Computing Resource
Execution and Management) provides a job execution and management capability for Grids, while
CEMonitor is a general purpose asynchronous event notification framework. Both components expose

a Web Service interface allowing conforming clients to submit, manage and monitor computational jobs

Keywords:

Web services

gLite middleware

Grid computing

Grid job management service
Notification service

to a Local Resource Management System.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Grid middleware distributions are often large software artifacts,
which include a set of components providing a basic functionality.
Such capabilities include (but are not limited to) data storage,
authentication and authorization, resource monitoring, and job
management. The job management component is used to submit,
cancel, and monitor jobs which are executed on a suitable
computational resource, usually referred as a Computing Element
(CE). ACEis the interface to a usually large farm of computing hosts
managed by a Local Resource Management System (LRMS), such
as LSF or PBS. Moreover, a CE implements additional features with
respect to the ones provided by the underlying batch system, such
as Grid enabled user authentication and authorization, accounting,
fault tolerance and improved performance and reliability.

In this paper we describe the architecture of Computing
Resource Execution and Management (CREAM), a system designed

* Corresponding author. Tel.: +39 051 2094847; fax: +39 051 2094510.

E-mail addresses: cristina.aiftimiei@pd.infn.it (C. Aiftimiei),
paolo.andreetto@pd.infn.it (P. Andreetto), sara.bertocco@pd.infn.it (S. Bertocco),
simone.dallafina@pd.infn.it (S. Dalla Fina), alvise.dorigo@pd.infn.it (A. Dorigo),
eric.frizziero@pd.infn.it (E. Frizziero), alessio.gianelle@pd.infn.it (A. Gianelle),
marzolla@cs.unibo.it (M. Marzolla), mirco.mazzucato@pd.infn.it (M. Mazzucato),
massimo.sgaravatto@pd.infn.it (M. Sgaravatto), sergio.traldi@pd.infn.it (S. Traldi),
luigi.zangrando@pd.infn.it (L. Zangrando).

1 On leave from NIPNE-HH, Romania.

0167-739X/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.12.006

to efficiently manage a CE in a Grid environment. CREAM provides
a simple, robust and lightweight service for job operations. It
exposes an interface based on Web Services, which enables a
high degree of interoperability with clients written in different
programming languages: currently Java and C+4+ clients are
provided, but it is possible to use any language with a Web
Service framework. CREAM itself is written in Java, and runs as
an extension of a Java-Axis servlet inside the Apache Tomcat
application server [1].

As stated before, it is important for users to be able to
monitor the status of their jobs. This means checking whether
the job is queued, running, or finished; moreover, extended status
information (such as exit code, failure reason and so on) must
be obtained from the job management service. While CREAM
provides an explicit operation for querying the status of a set
of jobs, it is possible to use a separate notification service in
order to be notified when a job changes its status. This service is
provided by CEMonitor, which is a general purpose asynchronous
notification engine. CEMonitor can be used by CREAM to notify the
user about job status changes. This feature is particularly important
for specialized CREAM clients which need to handle a large amount
of jobs. In these cases, CEMonitor makes the expensive polling
operations unnecessary, thus reducing the load on CREAM and
increasing the overall responsiveness.

CREAM and CEMonitor are part of the gLite [2] middleware
distribution and currently in production use within the EGEE
Grid infrastructure [3]. Users can install CREAM in stand-alone


http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:cristina.aiftimiei@pd.infn.it
mailto:paolo.andreetto@pd.infn.it
mailto:sara.bertocco@pd.infn.it
mailto:simone.dallafina@pd.infn.it
mailto:alvise.dorigo@pd.infn.it
mailto:eric.frizziero@pd.infn.it
mailto:alessio.gianelle@pd.infn.it
mailto:marzolla@cs.unibo.it
mailto:mirco.mazzucato@pd.infn.it
mailto:massimo.sgaravatto@pd.infn.it
mailto:sergio.traldi@pd.infn.it
mailto:luigi.zangrando@pd.infn.it
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006
doi:10.1016/j.future.2009.12.006

C. Aiftimiei et al. / Future Generation Computer Systems 26 (2010) 654-667 655

mode, and interact directly with it through custom clients or
using the provided C++-based command line tools. Moreover,
glite users can transparently submit jobs to CREAM through
the gLite Workload Management System (WMS). For the latter
case, a special component called Interface to Cream Environment
(ICE) has been developed. ICE receives job submission and
cancellation requests coming from a gLite WMS, and forwards
these requests to CREAM. ICE then handles the entire lifetime of
a job, including registering each status change to the gLite Logging
and Bookkeeping (LB) service [4].

1.1. Related works

The problem of job management is addressed by any Grid
system. Different job management services have been developed
starting from different requirements; furthermore, each service
must take into account the specific features of the middleware it
belongs to.

The UNICORE (Uniform Interface to Computing Resources) [5]
system was initially developed to allow German supercomputer
centers to provide seamless and secure access to their computa-
tional resources. Architecturally, UNICORE is a three-tier system.
The first tier is made of clients, which submit requests to the sec-
ond tier (server level). The server level of UNICORE consists of a
Gateway which authenticates requests from UNICORE clients and
forwards them to a Network Job Supervisor (N]S) for further pro-
cessing. The NJS maps the abstract requests into concrete jobs or
actions which are performed by the target system. Sub-jobs that
have to be run at a different site are transferred to this site’s gate-
way for subsequent processing by the peer NJS. The third tier of the
architecture is the target host which executes the incarnated user
jobs or system functions.

The Advanced Resource Connector (ARC) [6] is a Grid middle-
ware developed by the NorduGrid collaboration. ARC is based on
the Globus Toolkit,” and basically consists of three fundamental
components: the Computing Service which represents the interface
to a computing resource (generally a cluster of computers); the In-
formation System which is a distributed database maintaining a list
of know resources; and a Brokering Client which allows resource
discovery and is able to distribute the workload across the Grid.

The Globus Toolkit provides both a suite of services to submit,
monitor, and cancel jobs on Grid computing resources. GRAM4
refers to the Web Service implementation of such services [7].
GRAM4 includes a set of WSRF-compliant Web Services [8] to
locate, submit, monitor, and cancel jobs on Grid computing
resources. GRAM4 is not a job scheduler, but a set of services
and clients for communicating with different batch/cluster job
schedulers using a common protocol. GRAM4 combines job
management services and local system adapters with other service
components of the Globus Toolkit in order to support job execution
with coordinated file staging.

Initially, the job management service of the gLite middleware
was implemented by the legacy LGC-CE [9], which is based
on the pre-Web Service version of GRAM. The development of
CREAM was motivated by some shortcomings of the LCG-CE
related to performance and security issues. These issues and other
requirements behind the development of CREAM will be discussed
in Section 3.1.

1.2. Organization of this paper

This paper is organized as follows. In Section 2 we give a
high level overview on the job management chain in the gLite

2 Globus and Globus Toolkit are trademarks of the University of Chicago.

middleware. Then, in Section 3 we restrict our attention on the
CREAM and CEMonitor services: we illustrate the requirements
defined in the gLite design document for the Computing Element,
and give a high level description of CREAM and CEMonitor. Internal
details on CREAM are given in Section 4, and details on CEMonitor
are given in Section 5. The interactions with CREAM and CEMonitor
which are necessary to handle the whole job submission sequence
are then explained in Section 6. Section 7 describes how CREAM
and CEMonitor are built and deployed in the gLite production
infrastructure. Section 8 contains performance considerations, and
we discuss conclusions and future works in Section 9.

2. Job management in the gLite middleware

In this section we give a brief introduction to the job
management architecture of the gLite middleware. The interested
reader is referred to [2,9] for a more complete description.

Fig. 1 shows the main components involved in the gLite
job submission chain. We will consider job submission to the
CREAM CE only. The JobController+LogMonitor+CondorG and
LCG-CE components are responsible for job management through
the legacy LCG-CE, and will not be described in this paper.

There are two entry points for job management requests: the
gLite WMS User Interface (UI) and the CREAM UI. Both include a
set of command line tools which can be used to submit, cancel and
query the status of jobs. In gLite, jobs are described using the Job
Description Language (JDL) notation, which is a textual notation
based on Condor classads [10]. In Fig. 1 we have emphasized the
paths from the WMS UI to CREAM (top) and to the legacy LCG-CE
(bottom).

The CREAM Ul is used to interact directly with a specific CREAM
CE. It is a set of command line tools, written in C++ using the
gSoap engine [11]. The CREAM CLI provides a set of commands to
invoke the Web Services operations exposed by CREAM (the list of
available operations is given in Section 4).

On the other hand, the gLite WMS UI allows the user to
submit and monitor jobs through the gLite Workload Management
System (WMS) [12]. The WMS is responsible for the distribution
and management of tasks across Grid resources (in particular
Computing Elements), in such a way that applications are
efficiently executed. Job management through the WMS provides
many benefits compared to direct job submission to the CE:

e The WMS can manage multiple CEs, and is able to forward jobs
to the one which better satisfies a set of requirements, which
can be specified as part of the job description;

e The WMS can be instructed to handle job failures: if a job
aborts due to problems related to the execution host (e.g. host
misconfiguration) the WMS can automatically resubmit it to a
different CE;

e The WMS provides a global job tracking facility using the LB
service;

o The WMS supports complex job types (job collections, job with
dependencies) which cannot be handled directly by the CEs.

Note that there is a many to many relationship between the
gLite WMS UI and the WMS, that is, multiple User Interfaces can
submit to the same WMS, and multiple WMSs can be associated
with the same WMS UL

The WMS exposes a Web Service interface which is imple-
mented by the WMProxy component. The core of the WMS is the
Workload Manager (WM), whose purpose is to accept and satisfy
requests for job management. For job submissions, the WM tries to
locate an appropriate resource (CE) where the job can be executed.
The decision of which resources should be used is the outcome of
the matchmaking process between the requests and the available
resources. The user can specify a set of requirements in the job de-
scription. These requirements represent a set of constraints which



Download English Version:

https://daneshyari.com/en/article/425180

Download Persian Version:

https://daneshyari.com/article/425180

Daneshyari.com


https://daneshyari.com/en/article/425180
https://daneshyari.com/article/425180
https://daneshyari.com

