
Future Generation Computer Systems 25 (2009) 904–911

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Flow scheduling and endpoint rate control in GridNetworks
Sebastien Soudan a,∗, Bin Bin Chen b, Pascale Vicat-Blanc Primet c
a Université de Lyon, LIP, École Normale Supérieure de Lyon, France
b Department of Computer Science, National University of Singapore, Singapore
c INRIA, Université de Lyon, LIP, École Normale Supérieure de Lyon, France

a r t i c l e i n f o

Article history:
Received 9 December 2007
Received in revised form
3 June 2008
Accepted 17 June 2008
Available online 3 July 2008

Keywords:
Grid networks
Flow scheduling
Bulk data transfers
Rate limitation
Pacing

a b s t r a c t

In grid networks, distributed resources, computing or storage elements as well as scientific instruments
are interconnected to support computing-intensive and data-intensive applications. To facilitate the
efficient scheduling of these resources,wepropose tomanage themovements ofmassive data set between
them. This paper formulates the bulk data transfer scheduling problem and presents an optimal solution
tominimize the network congestion factor of a dedicated network or an isolated traffic class. The solution
satisfying individual flows’ time and volume constraints can be found in polynomial time and expressed as
a set of multi-interval bandwidth allocation profiles. To ensure a large-scale deployment of this approach,
we propose, for the data plane, a combination of a bandwidth profile enforcement mechanism with
traditional transport protocols. The paper examines several solutions for implementing such amechanism
in a Linux kernel. The experimental evaluation shows that packet pacing performed at IP level offers a
simple yet valuable and TCP-compatible solution for accurate bandwidth profile enforcement at very high
speed.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing is a promising technology that brings together
geographically distributed resources to build very high perfor-
mance computing environments for data-intensive or computing-
intensive applications. In such grids, massive quantities of data
(terabytes or even petabytes) are expected to be produced and
distributed around the world for analysis and processing. There-
fore, these infrastructures are often relying on dedicated high
speed optical networks. These networks present theoretical aggre-
gation factors and multiplexing degrees much lower than those
observed in traditional Internet context. Indeed, the aggregation
factor, which is the access link’s capacity over the nominal capac-
ity of end nodes links, is about 1 or 10 due to the high capacity of
the network interface of the interconnected servers and the rel-
atively modest capacity of the access links. In xDSL or traditional
Internet context, this factor is about 1000 or 10,000. This means
that, in grids, bandwidth demand from a single or a small set of
source-sink pair can easily reach the scale of hundreds of Mbit/s
to even several Gbit/s. Such giant tasks introduce a relatively low
multiplexing level, while consuming a large portion of bandwidth
in underlying networks.

∗ Corresponding author.
E-mail addresses: ssoudan@ens-lyon.fr (S. Soudan), chenbinb@comp.nus.edu.sg

(B.B. Chen), Pascale.Primet@inria.fr (P. Vicat-Blanc Primet).

On the other hand, TCP-based protocols are chosen by grid
applications to exchange the data between end points because of
their current availability in operating systems. Such distributed
transport protocols are designed to statistically share available
bandwidth among flows in a ‘‘fair’’ way. It is known that this core-
stateless approach performs well unless total demand approaches
full capacity of bottleneck link, which is relatively rare to happen
in Internet [1]. For example, an OC12 link (622 Mbit/s) can
concurrently support hundreds to thousands of flows from DSL
lines (around 2 Mbit/s). In low multiplexing context, the usage of
multi streams helps in increasing the multiplexing degree and in
improving the throughput. This explains why tools like GridFTP,
based on multiple and parallel streams, is widely used in grids
to give users better performance. However, such artifacts do not
provide any transfer delay guarantee. Indeed TCP/IP technology
has not been designed to ensure predictable completion time of
data transfers. Consequently, in grids, variation of incoming traffic
load and dramatic extension of data transfer delay can easily cause
computing tasks miss their deadlines [2]. Make things worse, as
the per-flow product of bandwidth and latency increases, TCP
becomes inefficient and prone to instability [3]. To avoid both
user dissatisfaction and end point resource under-utilization, we
believe that admission control and per-flow bandwidth allocation
of bulk data transfers is necessary (and also practical) in high-end
Grid networks, which are characterized by high QoS requirement
and low aggregation factor. We propose a data mover service to
carry out giant transfer tasks (with volume higher than several
Gbyte) in specified time intervals.

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.06.006

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ssoudan@ens-lyon.fr
mailto:chenbinb@comp.nus.edu.sg
mailto:Pascale.Primet@inria.fr
http://dx.doi.org/10.1016/j.future.2008.06.006

S. Soudan et al. / Future Generation Computer Systems 25 (2009) 904–911 905

Fig. 1. Bulk data transfer scheduling example.

For example, as shown in Fig. 1, 25 GB data produced in site
A needs to be moved to site B for processing. The CPU and disk
resources in site B have been reserved in advance from 200 s to
400 s, and from 0 s to 400 s, respectively. If transfer can begin only
when disk in site B is allocated, and there is no pipeline between
transfer and computing services, the bulk data transfer task r1
needs to move 25 GB data from site A to site B in the time interval
[0 s, 200 s], to fully use the CPU resources. As another example,
there is a 25 GB file stored in siteDwhere the lease timewill expire
in 300 s, owner of the data reserves new storage spaces in site C ,
where the lease begins from 100 s. The bulk data transfer task r2,
thus, requires to move 25 GB data from site D to site C in the time
interval of [100 s, 300 s].
Bandwidth reservation has been studied extensively for real-

time applications [4], which are often approximately modeled as
reserving a fixed amount of bandwidth from a given start time.
In comparison, bulk data transfer tasks are specified in terms of
volume and active window (from start time to deadline). With
flexibility at its best, a bulk data transfer task can start from any
time after its start time, use any and even time variant bandwidth
value, as long as it is completed before its deadline. The underlying
principle is to exploit this time flexibility to minimize congestion
by shifting traffic from peak time to off-peak time.
The rest of paper is organized as follows. Section 2.1 presents

the Bulk Data Transfer Scheduling Problem and a brief description
of the BDTS service architecture. Section 3 examines the problem
of end-host bandwidth profile enforcement which is a key
component for a large scale deployment of this approach. Several
solutions are discussed. The evaluation methodology and the
experimental results of mechanisms available in the Linux kernel
are given in Section 4. Related works are summarized in Section 5
before we conclude with Section 6.

2. Bulk data transfer scheduling problem

2.1. Problem formulation

Let R represent a set of data transfer requests over a network
G(V , E) consisting of node set V and edge set E, with edge capacity
µ(e) : E → R+ − {0}, where R+ is the set of non-negative real
numbers. Formally, if
• νr is the volume of the data to transfer,
• ωr = [ηr , ψr] is the time window (from start time ηr to deadline
ψr),
• |ωr | = ψr − ηr is the length of time window,
• Φr = {φ

1
r , φ

2
r , . . . , φ

|Φr |
r } is the set of paths connecting source

sr and destination dr ,
• r = (νr , ωr ,Φr) represents a request,
• Ω =

⋃
r∈R ωr is the union of all requests’ time windows,

• λφ(t) : ωr(φ) → R+, is the bandwidth allocation profile of
a path, which specifies the amount of bandwidth reserved in
every link e ∈ φ for path φ at time t ,
• fe(t) = λe(t)

µ(e) , is link e’s congestion factor at time t , and
• fωe = maxt∈ω fe(t), denotes the congestion factor over time
interval ω

then, the Bulk Data Transfer Scheduling problem, BDTS(R,G), is
to select a bandwidth allocation profile of a request r , λr(t) : ωr →
R+, for each request r ∈ R, so that the overall network congestion
factor is minimized. We define the network congestion factor over
ω as fωG = maxe∈E fωe.
It has been shown [5] that the optimal network congestion

factor does not change if we restrict the solution space to
the practical multi-interval scheduling schemes, which only use
bandwidth allocation profile taking the form of a step function. A
n-piece step function λ(t) defined over time window ω = [η,ψ]
can be represented as:

λ(t) = a0 + a1hb1ω (t)+ a2h
b2
ω (t)+ · · · + an−1h

bn−1
ω (t) (1)

where:

hbω(t) =
{
0 t ∈ [η, b)
1 t ∈ [b, ψ] (2)

is a revised Heaviside step function (unistep function). For i =
1, 2, . . . , n − 1, bi is the ith non-continuous point in (η, ψ), and
ai = λt→bi+(t)− λt→bi−(t). a0 = λ(η).
A multi-interval scheduling scheme divides the active window

of each job into multiple intervals, and reserves a constant
bandwidth value (including zero) independently in each of them.
The bulk data scheduling problem can be formulated as a linear
programming problem [2] defined as follow:

minimize : fΩG (3)

s.t.
∑
φ∈Φr

∫ ψr

ηr

λφ(t)dt = νr , ∀r ∈ R;∑
φ∈Φe∩Φ(t)

λφ(t) ≤ fΩG ∗ µ(e), ∀e ∈ E,∀t ∈ Ω;

λφ(t) : ωr(φ) → R+, ∀φ ∈ Φ.
The first constraint in formula (3) is the volume demand
requirement. The integral of a request’s bandwidth allocation
profile, which is the sum of the integrals over all of its paths, is
equal to its volume. The second one is the capacity constraint,
which bounds the sum of the profiles of all active paths passing
through a link. The third one gives the constraint on solution
space. BDTS can be solved in polynomial time as a Maximum
Concurrent Flow Problem (MCFP), and the number of intervals used
by each job’s bandwidth reservation profile is upper bounded in
the optimal solution attained as demonstrated in [2].

Download	English	Version:

https://daneshyari.com/en/article/425206

Download	Persian	Version:

https://daneshyari.com/article/425206

Daneshyari.com

https://daneshyari.com/en/article/425206
https://daneshyari.com/article/425206
https://daneshyari.com/

