
Future Generation Computer Systems 25 (2009) 147–152

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Integrated resource management for lambda-grids: The Distributed Virtual
Computer (DVC)
Andrew A. Chien a,∗, Nut Taesombut b
a Intel Research, Santa Clara, CA, United States
b Department of Computer Science and Engineering, University of California, San Diego, United States

a r t i c l e i n f o

Article history:
Received 31 January 2008
Received in revised form
28 June 2008
Accepted 12 July 2008
Available online 29 July 2008

Keywords:
Optical networks
Management
Grids
Middleware
Network abstraction
Network resource management
Internet protocol
Adminstrative domain
High performance computing
High speed networking

a b s t r a c t

The Distributed Virtual Computer (DVC) is the key unifying element of the OptIPuter software
architecture. It provides a simple, clean abstraction for applications or higher-level middleware, allowing
them to use lambda-grids with the same convenience as a VPN. The DVC is successful because it employs
integrated network and end-resource selection, achieving high quality results so that there is little
incentive for end-users to expose and manage lower-level interfaces. We describe the development of
the DVC abstraction, key results, and experience with multiple applications and testbeds.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

When theOptIPuter project [1] began in September 2002, itwas
a heady time. We set out to build ‘‘lambda grids’’ which would
tap the communication capabilities of the extraordinary quantities
of fiber that had been laid in speculation during the late 1990’s
and thru the ‘‘dot com’’ boom. While a few ‘‘stunts’’ had been
done in the university community, the challenge of opening these
elements of the physical layer to software applications –which had
never before had visibility below the IP layer in the wide area –
was a radical and daunting challenge. As prior application stunts
with optical networks required heroicmanual intervention [2], the
prospect of user-controlled, highly-optimized access to ‘‘lambdas’’,
much less optimized ‘‘networks of lambdas and end resources’’ – a
lambda-grid – seemed quite remote.

At the same time, a significant community had sprung up
around ‘‘grid computing’’ [3], the exciting notion – now widely
adopted – that large-scale resource sharing could be done across

∗ Corresponding author.
E-mail addresses: andrew.chien@intel.com (A.A. Chien), nut@cs.ucsd.edu

(N. Taesombut).

the wide area, given appropriate abstractions, middleware, and
of course compute, data, and network resource infrastructures.
These grid computing systems, focused on efficient sharing and
exploitation of massive supercomputing systems and data servers,
paying little attention to the networks between them [4,5].

Other high visibility projects in the community [6] had
concluded that optical networks were too difficult for applications
or end-users to access directly, but rather that sophisticated
‘‘network engineers’’ were needed to set up sharable network
structures — that would constrain the use of ‘‘lambda’s’’ in
simple, structured patterns, that the applications would conform
themselves to. Essentially, this approach posited that dynamic
resource management, and efficient automatic management and
selection could not be achieved.

To bring together the innovative protocols and applications
demanding terabit performance with IP service, and low-level
optical network management protocols involving muxes and
demuxes, oxc switch control protocols, and lambdas,wedeveloped
the OptIPuter software architecture (see Fig. 1). The Distributed
Virtual Computer (DVC) abstraction [7] framed the challenge to
make computing across lambda-grids as easy for applications as
computing on a VPN — a staple of local- or wide-area networking.
However, the challenge was much greater — the DVC abstraction
is more like a VPN with control over sharing and guaranteed

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.07.007

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:andrew.chien@intel.com
mailto:nut@cs.ucsd.edu
http://dx.doi.org/10.1016/j.future.2008.07.007


148 A.A. Chien, N. Taesombut / Future Generation Computer Systems 25 (2009) 147–152

Fig. 1. OptIPuter system software architecture.

extremely high performance. In this paper, we summarize the
major contributions of the DVC project, and the history of its
development. Specific contributions include:
1. Describing the DVC architecture and showing how it solves

the central architectural problem, providing a high-level
application view to optical networks and resourcemanagement
systems,

2. Showing DVC’s layer atop other grid services for efficient
implementation, and provide a high-level abstraction with
minimal cost across a wide variety of network information
models, and

3. Describing how the DVC abstraction was applied to a wide
variety of science applications and other middleware.

In addition to the technical achievements, one of the most
gratifying aspects of the project was the acceptance and use of
the DVC middleware (the invention of our research) within and
beyond the OptIPuter project. Its utility was clearly appreciated,
and we believe it should be adopted in a wide variety of areas.
We learned a great deal about how to get a major change
in software architecture established, and of course the major
benefits and software modularity it can bring. Applications ported
to DVC were fully portable — all aspects of the underlying
special networking structures were cleanly captured. As well,
full performance could be delivered thru the DVC selection and
configuration mechanisms.

The remainder of this paper is organized as follows. Section 2
describes the Distributed Virtual Computer (DVC) architecture and
key components. Section 3 presents integrated network- and end-
resource selection algorithms, evaluation methodology and key
results. Section 4 describes our experience with real scientific
applications and network testbeds. Section 5 summarizes the
paper.

2. Distributed Virtual Computer architecture

The DVC provides an integrated resource abstraction enabling
applications to exploit lambda-grids (lambdas, computers, data
servers, etc.) with simple use and controllable performance
models. Unlike traditional grid and optical networkmiddleware [4,
6,8], it allows an application to describe a combined set of
desired communication and end resources, then automatically
optimizes their configuration and manages them for reliable
and high performance. The DVC abstraction not only presents
a simple, unified interface to underlying networks and resource
management systems, but also provides integrated network/end-
resource management enabling both high application capabilities
and resource efficiencies.

The DVC architecture is shown in Fig. 2. Key elements include:

• DVC-ISL — an ‘‘integrated specification language’’ [9] that de-
scribes application resource requirements, including traditional
end resource specification and explicit high-level description of
communication resources.

• DVC-RCP — a ‘‘resource configuration planner’’ which takes
a DVC-ISL specification as input, and returns a resource
configuration (DVC-RC) matching the specification.

• DVC-RB — a ‘‘resource binder’’ which takes a DVC-RC as
input and negotiates with grid resource managers and optical
network services for co-allocation of the end resources and
private networks [9,16].

Here, an application (or user) can conveniently describe,
acquire and use a private set of distributed end resources and
optical networks. Specifically, the application creates a DVC-ISL
specification describing its resource needs, and passes it to the
DVC-RCP. In response, the DVC-RCP retrieves information about
available resources from grid and network information services,
and matches the given specification with a DVC-RC, a combined
set of selected end resources and optical network. The DVC-RC is
then presented to the application. If not satisfied with the result,
the application modifies its specification and repeats the process.
Then, the application passes the DVC-RC to the resource binder
(DVC-RB) that instantiates it by allocating the corresponding end
resources and optical networks. All these resources are then bound
into a DVC environment [7]. The DVC middleware uses them to
implement a simple environment for applications — comparable
to a private, local distributed system. Cushioned by the DVC
middleware, applications can be written simply — avoiding the
full complexity of a grid environment. Further, the application can
use DVC API’s to configure the DVC environment and modify its
configurations according to evolving application requirements and
resource conditions.

Fig. 2. DVC Integrated resource management architecture.



Download English Version:

https://daneshyari.com/en/article/425230

Download Persian Version:

https://daneshyari.com/article/425230

Daneshyari.com

https://daneshyari.com/en/article/425230
https://daneshyari.com/article/425230
https://daneshyari.com

