Future Generation Computer Systems 36 (2014) 122-132

Contents lists available at ScienceDirect

FiGICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

Mining permission patterns for contrasting clean and malicious

android applications

Veelasha Moonsamy, Jia Rong*, Shaowu Liu

—

@ CrossMark

School of Information Technology, Deakin University, 221 Burwood Highway, Vic 3125, Australia

HIGHLIGHTS

We collected a new dataset with 1227 clean Android applications.
We considered both required and used permission.
Biclustering method has been employed to provide visualization.

A pattern mining algorithm is proposed to identify contrast permission patterns.

The permission patterns show big contrasts between clean apps and malware.

ARTICLE INFO ABSTRACT

Article history:

Received 16 March 2013

Received in revised form

1 August 2013

Accepted 5 September 2013
Available online 18 September 2013

An Android application uses a permission system to regulate the access to system resources and users’
privacy-relevant information. Existing works have demonstrated several techniques to study the required
permissions declared by the developers, but little attention has been paid towards used permissions.
Besides, no specific permission combination is identified to be effective for malware detection. To fill these
gaps, we have proposed a novel pattern mining algorithm to identify a set of contrast permission patterns

that aim to detect the difference between clean and malicious applications. A benchmark malware

Keywords:

Android permission
Data mining
Biclustering
Contrast mining
Permission pattern

patterns.

dataset and a dataset of 1227 clean applications has been collected by us to evaluate the performance
of the proposed algorithm. Valuable findings are obtained by analyzing the returned contrast permission

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Smartphone is used to describe a mobile device equipped with
enhanced computing capability and connectivity [1], such as Nexus
by Google [2], iPhone by Apple [3], Blackberry by RIM [4] and
Windows Phone by Microsoft [5]. In the past few years, the global
telephony industry has witnessed an upsurge in the sales of smart-
phones. A smartphone is usually sold with an in-built mobile
operating system (OS) together with a number of pre-installed
“applications” packaged by the device manufacturer. An applica-
tion, the software running on smartphones, enhances the smart-
phone’s functionality and supports the interaction with end users
to accomplish their tasks. Calendar, address book, alarm clock, media
player and web browser are the common applications provided by
the device manufacturers, but one important application exists on
every smartphone—the “application store”, which allows end users

* Corresponding author. Tel.: +61 411645497.
E-mail addresses: v.moonsamy@research.deakin.edu.au (V. Moonsamy),
jiarong@acm.org, jiarong@tulip.org.au (J. Rong), swliu@deakin.edu.au (S. Liu).

0167-739X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.09.014

to access online application markets to browse and download addi-
tional applications of their choice.

Every device manufacturer hosts an application market for its
own OS platform, such as Apple’s App Store [6], Blackberry’s App
World [7] and Google Play [8]. However, far before the first official
application markets were introduced in 2008 by Apple, smart-
phone application distribution was highly dependent on third-
party sources, where individual application developers were free
to upload their products. Due to a huge number of low-price ap-
plications being available, there is still a large group of end users
who prefer visiting third-party application markets, but not all the
applications from markets are “safe”. The software that is specially
designed to harm a device, its OS or other software is called “Mal-
ware”, which stands for malicious software [9]. The increasing sales
of smartphones has pushed the rapid growth of mobile malware.

As pointed out by Zhou and Jiang [10], malware or malicious
applications might cause a series of user unexpected operations,
for example, stealing user’s personal information, making calls or
sending an SMS without the user’s knowledge. Such malicious be-
haviors not only cost users extra data usage, but also potentially
bring privacy issues. Furthermore, the users may not be aware of

http://dx.doi.org/10.1016/j.future.2013.09.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.09.014&domain=pdf
mailto:v.moonsamy@research.deakin.edu.au
mailto:jiarong@acm.org
mailto:jiarong@tulip.org.au
mailto:swliu@deakin.edu.au
http://dx.doi.org/10.1016/j.future.2013.09.014

V. Moonsamy et al. / Future Generation Computer Systems 36 (2014) 122-132 123

running malware on their smartphones because in many cases the
malware are downloaded and/or installed without authorization.
Accordingly, an efficient and effective malware detection tech-
nique is highly demanded to protect smartphone users from the
potential prevalence.

To effectively detect malware from millions of applications
available on official and third-party markets, many efforts have
contributed to studying the nature of smartphone platforms and
their applications in the past decade. As the most popular mobile
platform, Google's Android overtook others to be the top mo-
bile malware platform. The Android platform employs the per-
mission system to restrict applications’ privileges to secure the
users’ privacy-relevant resources [11]. An application needs to
get a user’s approval for the requested permissions to access the
privacy-relevant resources. Thus, the permission system was de-
signed to protect users from applications with invasive behaviors,
but its effectiveness highly depends on the user’s comprehension
of permission approval. We refer to the permissions that are re-
quested during application installation as required permissions. Un-
fortunately, not all the users read or understand the warnings of
required permissions shown during installation. To improve this
situation, many researchers have tried to interpret Android permis-
sions and their combinations [12-15]. Frank et al. [11] proposed
a probability model to identify the common required permission
patterns for all Android applications. Zhou and Jiang [10] listed
the top required permissions for both clean and malicious ap-
plications, but only individual permissions were considered by
frequency counting. A problem is still remaining of whether the
patterns in a permission combination can provide better per-
formance for malware detection. Furthermore, in the existing
literature, only the required permissions are considered in permis-
sion pattern mining, no work has incorporated the used permis-
sions that are extracted from static analysis by the Andrubis system
(http://anubis.iseclab.org) [16]. Therefore, we are the first group to
explore both the required and used permissions. Accordingly, our
aim is to propose an efficient pattern mining method to identify a set
of contrast permission patterns that effectively distinguish malware
from the clean applications.

By using a pattern mining technique to identify the desired
permission patterns, we need two datasets: one has only clean
Android applications and the other contains all malicious ones. In
2012, Zhou and Jiang [10] published the first benchmark dataset of
malicious applications in 49 malware families, which was collected
from third-party markets between August 2010 and October 2011.
This is an ideal malware dataset for our experiments. On the other
hand, due to the lack of a dataset of clean applications published
at the same time period as Zhou and Jiang’s, we collected our
own clean dataset. The clean applications were collected from
two popular third-party Android applications markets: SlideME
(http://slideme.org) and Pandaapp (http://android.pandaapp.com).
We sorted the collected applications based on the times of their
download and the ratings given by the users, and only the top
ones were picked. Each application was scanned by forty-three
antivirus engines on VirusTotal (https://www.virustotal.com) [17],
and only the ones that passed all virus tests were considered as
“clean” and kept to form the clean dataset. These clean applications
do not impede on the smooth execution of the OS. Like Zhou and
Jiang, we represent applications in the collected clean dataset using
a vector of 130 binary values, each of which is associated with
one of the 130 official Android permissions. A value 1 is assigned
to a permission only if it is required or used by an application,
otherwise, 0 is given instead.

The novelty and contributions of this work can be summarized
as follows:

e We collected a new dataset that contains 1227 clean applica-
tions that were uploaded to third-party markets from August
2010 to October 2011.

e Beyond the current studies that focused on required permissions
only, we also considered the used permissions.

e We utilized a hierarchical Biclustering method to initially an-
alyze both clean and malware datasets. The obtained result-
ing figures provided a straightforward preview of the data
distribution, from which we built up our model of mining a set
of permissions rather than using individual permissions as the
patterns.

o We proposed a contrast permission pattern mining algorithm
to identify the interesting permission sets that can be used to
distinguish applications from malicious to clean.

e Our demonstration of the proposed Contrast Permission Pattern
Mining proved that both required and used permissions should
be considered in late malware detection tasks.

The rest of the paper is organized as follows: Section 2 briefly
reviews the concepts of the Android platform, its applications,
the permission system and the current research work in malware
detection. In Section 3, we present our initial analysis on the
collected datasets using a statistical method and biclustering
followed by the proposed contrast pattern mining algorithm. The
experiments and the obtained results are then reported in Section 4
followed by a further discussion on findings. Finally, Section 5
concludes the entire paper together with our future work.

2. Background and related work

2.1. Android

Android is a Linux-based OS which was designed and developed
by the Open Handset Alliance in 2007 [18]. The Android platform is
made up of multiple layers consisting of the OS, the Java libraries
and the basic built-in applications [19]. Additional applications can
be downloaded and installed from either official or third-party
markets.

Google provides the application developer community with a
Software Development Kit (SDK) [20] to build Android applications
and it includes a collection of Java libraries and classes, sample
applications and developer documentations. The SDK can be used
as a plug-in for Eclipse IDE [21] and therefore allows developers to
code their applications in a rich Java environment. One particularly
useful feature of the SDK is the Android emulator which allows
developers to test their applications in virtual devices on various
versions of Android OS.

An Android application includes two folders and one file: (i)
Class, (ii) Resources and (iii) AndroidManifest.xml. The Class folder
contains the application’s source code in Java; the Resources folder
stores the multimedia files; and the AndroidManifest.xml file
lists the required permissions that are declared by the developer.
After the Java source code is done, it is then compiled and
converted into Dalvik byte code [22] and bundled with the
Resources folder and AndroidManifest .xml file to generate the
Android Application Package (APK). Finally, before the APK can be
installed on a device or emulator, the develop has to generate a
key and sign the application.

Android developers can upload their applications to either the
official market, Google Play [23], or any third-party market. To
secure the privacy-relevant resources for its users, Google provides
automatic antivirus scanning [24]. The applications will be rejected
from Google Play if any malicious content is detected. From 2012,
Google has extended its antivirus service on the new Android 4.2
0S, which is claimed to be able to scan applications before they are
installed on the device [25].

2.1.1. Android permission system

Google applies the permission system as a measure to restrict
access to privileged system resources. Application developers have
to explicitly mention the permissions that need user’s approval

http://anubis.iseclab.org
http://slideme.org
http://android.pandaapp.com
https://www.virustotal.com

Download English Version:

https://daneshyari.com/en/article/425250

Download Persian Version:

https://daneshyari.com/article/425250

Daneshyari.com

https://daneshyari.com/en/article/425250
https://daneshyari.com/article/425250
https://daneshyari.com

