ELSEVIER

Available on]ine at www.sciencedirect.com
ScienceDirect

Future Generation Computer Systems 23 (2007) 517-522

FGCS

QUTURE
@ENERATION
@®OMPUTER
QYSTEMS

www.elsevier.com/locate/fgcs

Grid Services Base Library: A high-level, procedural application
programming interface for writing Globus-based Grid services

Adam L. Bazinet?, Daniel S. Myers a1 John Fuetsch®P2, Michael P. Cummings®*

a Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
b Department of Mathematics and Computer Science, Pomona College, Claremont, CA 91711, USA

Received 15 December 2005; received in revised form 26 April 2006; accepted 15 July 2006
Available online 22 August 2006

Abstract

The Grid Services Base Library (GSBL) is a procedural application programming interface (API) that abstracts many of the high-level functions
performed by Globus Grid services, thus dramatically lowering the barriers to writing Grid services. The library has been extensively tested and
used for computational biology research in a Globus Toolkit-based Grid system, in which no fewer than twenty Grid services written with this

API are deployed.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Client/server; Parallel processing; Web-based services; Software libraries; Object-oriented programming; Distributed systems

1. Introduction

As the size and complexity of life science data has increased,
so have the sophistication and computational complexity of
data analysis increased. Entire data types that did not exist a
relatively short time ago (e.g., complete genome sequences,
large-scale microarray results, large multilocus genotypes) now
constitute much of life science data. Similarly, analytical chal-
lenges including inference and combinatorial optimization have
been attacked with computer-intensive methods (e.g., stochas-
tic simulation, machine learning methods, Bayesian analysis,
Markov-chain Monte Carlo sampling). As a consequence, the
computational demands of life science research continue to in-
crease. Therefore, some life science researchers are turning to
Grid computing to meet their computing resource needs, fol-
lowing a trend toward Grid computing in academia in general

* Corresponding author. Tel.: +1 301 405 9903; fax: +1 301 314 1341.
E-mail addresses: pknut777 @umiacs.umd.edu (A.L. Bazinet),
dsmyers @mit.edu (D.S. Myers), jfuetsch@pdi.com (J. Fuetsch),
mike@umiacs.umd.edu (M.P. Cummings).

I present address: Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139-4307, USA.

2 Present address: PDI/DreamWorks, 1800 Seaport Boulevard, Redwood
City, CA 94063, USA.

0167-739X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi: 10.1016/j.future.2006.07.009

[10]. However, there are several barriers to widespread use of
Grid computing in the life sciences, including the lack of Grid-
enabled applications and the difficulty of producing them, the
deficit of Grid computing resources available for life science
research, and the difficulty of using Grid computing effectively.
Several of these barriers to the use of Grid computing in the life
sciences are being addressed [22]. The objective of this paper
is to describe middleware tools that address one specific barrier
mentioned above, difficulty creating Grid-enabled applications.

Grid computing has been defined [10] as a model
of distributed computing that uses geographically and
administratively disparate resources. In Grid computing,
individual users can access computers and data transparently,
without having to consider location, operating system, account
administration, and other details. In Grid computing, the details
are abstracted, and the resources are virtualized.

Our ongoing research and development in Grid computing
has been motivated in large part by the computational
demands of our own research in computational biology and
bioinformatics. This research program focuses on problems
in molecular evolution and genetics, which often require
approaches that are very computation-intensive. Our need for
computer resources for our work led to the development of
a simple Grid computing system using commodity tools [23],
which was used for a large-scale simulation study [9]. Our


http://www.elsevier.com/locate/fgcs
mailto:pknut777@umiacs.umd.edu
mailto:dsmyers@mit.edu
mailto:jfuetsch@pdi.com
mailto:mike@umiacs.umd.edu
http://dx.doi.org/10.1016/j.future.2006.07.009

518 A.L. Bazinet et al. / Future Generation Computer Systems 23 (2007) 517-522

subsequent work has made use of the Grid middleware
Globus [12] and the Berkeley Open Infrastructure for Network
Computing (BOINC) [3,7], and focused on expanding the reach
of Grid computing by creating a system that combines these
two models (Myers, Bazinet and Cummings, in preparation).
The work described here extends and complements other
efforts [22] and represents our approach to making it easier
to develop Grid-enabled applications using the Globus Toolkit.
Although our focus is on applications used in computational
biology and bioinformatics, the middleware solution we
developed is general and is applicable to other domains.

The Globus Toolkit represents the current state of the art
in Grid middleware. It is the focus of much of the ongoing
research in Grid computing, and we can expect to see continued
support and development well into the future. Based on a
web services architecture, Globus provides facilities for the
execution and management of jobs on remote resources, on-
the-fly resource discovery, file transfer, authentication and
authorization, and encryption of messages. Using the Globus
Toolkit, it is possible to build large, highly-distributed, and
robust computational grids.

Over the past several years, our research has been aimed
at using the Globus toolkit, in combination with other Grid
middleware, to create a computational Grid for scientific
research. We began development with Globus Toolkit 3,
which formed the backbone of our Grid system. Development
continued until we had a fully functional production-level
Grid system built around Globus Toolkit 3. After successful
production use of this system, we focused our efforts on
upgrading our infrastructure to use Globus Toolkit 4 (which was
released in early 2005). The challenge of writing Grid services
with the Globus Toolkit has remained constant, however, and
we will now describe some of the implementation challenges
we have encountered and our approaches to overcoming them.

2. The challenges of working with Globus

As might be expected in research-grade software, there are
problems with the Globus Toolkit. First, the application pro-
gramming interface (API) that Globus provides for writing Grid
services is a relatively low-level one, and accomplishing com-
mon tasks (such as transferring a file between two systems) can
often require a lot of code. Writing a fully featured application-
based Grid service is not as easy as we would like it to be.

Second, Globus uses an asynchronous, event-based model
for programming Grid services. Although such a model is well
suited to Grid computing, where one may have to wait unknown
lengths of time for operations to complete (e.g., between
submitting a job and receiving the results), it is not necessarily
the most intuitive programming model. In many cases the task
of writing Grid services will be facilitated if it can be done
using a procedural model with blocking function calls, even if
the underlying infrastructure is event-based.

Third, because the Globus Toolkit is research software under
continual development, there is always the possibility that the
API presented to Grid services will change between versions.
This is precisely what happened between Globus Toolkit 3 and

Globus Toolkit 4. A perceived high probability of API change
can make programmers hesitant about writing Grid services
using the APL

Finally, creating a new Grid service requires creating a
number of new files in a very specific directory structure and
with very specific names, namespaces, and classes. This is a
tedious and error-prone process at best, but one we have to
repeat each time we write a Grid service. Moreover, because
we were interested in having our applications run in a general
framework, we designed our Grid system around the idea that
every Grid-enabled application would be presented as a Grid
service. Thus, we knew we would be building a significant
number of services, and so it was desirable to reduce the
overhead associated with this process as much as possible.

3. Our solution

To resolve the above problems, we have written the Grid
Services Base Library (GSBL), which provides a high-level,
procedural API for writing Grid services. In our Grid system,
GSBL is the API called by our body of Grid services; at
this level, no Globus code is invoked directly. Thus, in the
event that the Globus API changes, only GSBL will require
updating. It should also be noted that the Globus team tries to
preserve concepts from version to version of the toolkit, which
means that high-level GSBL-supported operations should also
migrate easily. This solves the problem of a changing API; in
the rest of this section, we discuss the GSBL API and how it
solves the problems associated with the low-level, event-based
programming model of Globus.

Admittedly, we have not attempted to provide a friendly
interface to the entire Globus API or to support all possible
operations. As a guiding principle of our API design we
have focused on making simple and common tasks easy to
implement, while leaving the programmer to the Globus API
for more difficult and uncommon tasks. We note, however,
that after having built twenty production Grid services for life
science applications, we have yet to encounter the need to
circumvent GSBL to write custom Globus code.

In keeping with standard web services procedures, we have
designed our Grid system with a generalized client—service
architecture in mind. As mentioned previously, each Grid
service represents a Grid-enabled application (see Section 4
for a brief description of our Grid services). A remote
Grid client then invokes a set of operations that cause a
particular application to be run on the Grid. These operations
are performed during job setup, submission, monitoring,
and cleanup, and they fall into the following areas: initial
configuration of Grid client—service interaction, argument
processing, transfer of files between the client and the service,
and submission and monitoring of Grid Resource Allocation
and Management (GRAM) jobs by the service. It should be
noted that GSBL is a library for writing both Grid services and
Grid clients that are inter-operable in the framework outlined.

3.1. Initial configuration of client—service interaction

There are several steps that a Globus Grid client needs to
take in order to establish communication with a Grid service.



Download English Version:

https://daneshyari.com/en/article/425350

Download Persian Version:

https://daneshyari.com/article/425350

Daneshyari.com


https://daneshyari.com/en/article/425350
https://daneshyari.com/article/425350
https://daneshyari.com

