
Future Generation Computer Systems 26 (2010) 797–819

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the evaluation of gridification effort and runtime aspects of JGRIM
applications
Cristian Mateos ∗, Alejandro Zunino ∗, Marcelo Campo ∗
ISISTAN Research Institute, UNICEN University, Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

a r t i c l e i n f o

Article history:
Received 27 March 2008
Received in revised form
16 February 2010
Accepted 25 February 2010
Available online 6 March 2010

Keywords:
Grid computing
Gridification
Grid services
JGRIM
Dependency injection

a b s t r a c t

Nowadays, Grid Computing has been widely recognized as the next big thing in distributed software
development. Grid technologies allow developers to implement massively distributed applications with
enormous demands for resources such as processing power, data and network bandwidth. Despite the
important benefits Grid Computing offers, contemporary approaches for Grid-enabling applications still
force developers to investmuch effort intomanually providing code to discover and access Grid resources
and services.Moreover, the outcome of this task is usually software that is polluted byGrid-aware code, as
a result of which themaintainability suffers. In a previous article we presented JGRIM, a novel approach to
easily gridify Java applications. In this paper, we report a detailed evaluation of JGRIM that was conducted
by comparing it with Ibis and ProActive, two platforms for Grid development. Specifically, we used
these three platforms for gridifying the k-Nearest Neighbor algorithm and an application for restoring
panoramic images. The results show that JGRIM simplifies gridification without resigning performance
for these applications.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The term ‘‘Grid’’ refers to a widely distributed computing envi-
ronment whose main purpose is to meet the increasing demands
of advanced science and engineering [1,2].Within a Grid, hardware
and software resources from distributed sites are virtualized to
transparently provide applicationswith vast amounts of resources.
Just like an electrical power grid, a computational Grid offers a
powerful yet easy-to-use computing infrastructure to which ap-
plications can be plugged and efficiently executed without much
effort from the user [3]. Unfortunately, given the extremely hetero-
geneous, complex nature inherent to Grids, writing and adapting
applications to execute on a Grid is certainly a very difficult task.
This raises the challenge of providing appropriate techniques to
gridify applications, that is, semi-automatic and ideally automatic
methods for easily transforming conventional applications to ap-
plications that are capable of benefiting from Grid resources.
In this light, a number of tools for simplifying Grid applica-

tion development have been proposed. Basically, the goal of these
technologies is to unburden developers of the necessity to know
the many particularities to contact individual Grid services (e.g.

∗ Corresponding address: ISISTAN Research Institute, UNICEN University, Cam-
pus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina. Tel.: +54 2293
439682x35; fax: +54 2293 439683.
E-mail address: cmateos2006@gmail.com (C. Mateos).

protocols and endpoints), capture common patterns of service
composition (e.g. secure data transfer), and offer convenient pro-
gramming abstractions (e.g. master–worker templates). Roughly,
these programming tools can be grouped into toolkits and frame-
works. On one hand, the idea behind programming toolkits is to
provide high-level programming APIs that abstract away the de-
tails of the services provided by existing Grid platforms. Examples
of these tools include GSBL [4], Java CoG Kit [5], MyCoG.NET [6],
GAT [7] and SAGA [8]. On the other hand, Grid programming frame-
works capture common Grid-dependent code and design in an
application-independent manner (e.g. application templates, ser-
vice composition patterns, etc.) and provide slots where program-
mers can put application specific functionality to build a complete
Grid application. Examples of such frameworks include MW [9],
AMWAT [10] and JaSkel [11].
A remarkable feature of the above technologies is that gridifi-

cation is accomplished through a one-step process, that is, there is
not a clear separation between the tasks of writing the pure func-
tional code of an application and adding Grid concerns to it [12].
Developers Grid-enable applications as they write code by keep-
ing inmind specific API calls or framework constructs. Hence, tech-
nologies promoting one-step gridification assume developers have
a solid knowledge on the programming tool being used. Alterna-
tively, there are some efforts promoting a two-step methodology
to gridification (see [12] for a comprehensive discussion of them),
which are mostly aimed at supporting developers having little or
even no background on Grid technologies. Basically, the ultimate

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.02.014

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:cmateos2006@gmail.com
http://dx.doi.org/10.1016/j.future.2010.02.014


798 C. Mateos et al. / Future Generation Computer Systems 26 (2010) 797–819

goal of approaches falling in this category is to allow developers to
incorporate Grid behavior to an application after the logic of the
application has been implemented. Consequently, projects in this
line of research are mainly intended to provide gridification meth-
ods rather than Grid programming facilities.
In a previous paper, we proposed JGRIM [13], a two-step grid-

ification method for gridifying Java applications. Specifically, we
described the features of JGRIM and showed its practical advan-
tages through preliminary experiments based on source codemet-
rics. In this paper, we report a thorough evaluation of the approach
by comparing gridification effort as well as execution perfor-
mance and network resource utilizationwith respect to related ap-
proaches. To this end, two existing applications were gridified and
deployed on an Internet-based Grid. In order to assess gridification
effort, we introduce a novel metric called GE (Gridification Effort)
that takes into account the amount of redesign, reimplementation
and deployment effort necessary to port an ordinary application to
a Grid, which is independent of the gridification tool. All in all, the
experiments will contribute to have a better understanding of the
benefits and potentials of our approach for porting applications to
a Grid, and executing the resulting Grid-enabled code.
The rest of the paper is organized as follows. The next section

discusses the most relevant related work. Then, Section 3 takes a
deeper look at the concepts and notions underpinning JGRIM. The
section also illustrates through code examples the facilities offered
by JGRIM for gridification. Later, Section 4 presents a detailed
evaluation of the approach, which represents the main goal of the
paper. Lastly, Section 5 concludes the paper.

2. Related work

Several approaches for gridifying conventional software can be
found in the literature. Here we briefly describe the approaches
that are more relevant to our work.
Ibis [14] is a Grid platform for implementing Java-based

applications. Ibis is designed as a uniform, extensible and portable
communication library on top of which a variety of popular
programming models such as MPI [15] and RMI [16] have been
implemented. Another interesting programming model of Ibis is
Satin [17,18], which allows developers to parallelize CPU-bound,
divide and conquer applications. Satin is aimed at exploiting CPU
resources, but does not provide support for taking advantage of
other types of Grid resources such as services, data repositories,
applications, etc. Finally, Ibis does not offer support forWebService
technologies such as WSDL [19] and UDDI [20]. Indeed, Web
Services and generally speaking Service Oriented Architectures
(SOAs) play a very important role in Grid Computing because they
address the problem of heterogeneous systems integration [21].
These technologies thus supply the basis for more interoperable
Grids and underlie several of the current Grid initiatives [22].
ProActive [23] is a Java platform for parallel distributed com-

puting. Applications are composed of mobile entities called active
objects (AO). AOs serve method calls originated from other AOs
and regular Java objects based on the wait-by-necessity mecha-
nism, which asynchronously handles individual calls, and trans-
parently blocks requesters upon the first attempt to read the
result of an unfinished call. ProActive also provides technical ser-
vices [24], a flexible support that allow developers to address non-
functional concerns (e.g. load balancing and fault tolerance) by
plugging certain configuration to applications at deployment time.
A drawback of ProActive is that AO creation, lookup and mo-
bility are in charge of the programmer. Therefore, the code for
managing parallelism and AOmigration is mixed with the applica-
tion logic. Besides, ProActive provides limited/no support for Web
Service invocation/discovery. Similarly, JavaSymphony [25] deals

semi-automatically with migration and parallelism, allowing pro-
grammers to explicitly control such features as needed. However,
JavaSymphony also suffers from the problems ofmixing these non-
functional concerns with functional ones, rendering gridification
difficult. Like Ibis, JavaSymphony offers limited support for using
common Grid protocols and technologies.
XCAT [26] supports distributed execution of component-based

applications. An XCAT application is a stateful functional Grid ser-
vice comprising several components. XCAT runs on top of existing
Grid platforms (e.g. [27]), linking individual components to con-
crete platform-level services. Besides, application components can
also represent legacy binary programs. XCAT provides an API that
allows developers to build complex applications by assembling
service components and legacy components. Though this task can
be carried out with little coding effort, developers still have to pro-
grammatically manage component creation and linking at the ap-
plication level. Furthermore, opportunities for application tuning
largely depend on the facilities the underlying Grid platform be-
ing used offers, as XCAT does not provide support for fine tuning
components at the application level.
Despite greatly simplifying the process of adapting the code

of an application for Grid enabling it, these approaches still re-
quire a significant amount of coding effort from the developer. As
an alternative, there are tools that follow what we might call a
‘‘gridify as is’’ philosophy. These approaches treat an input appli-
cation as a black box by taking either its source or executable code,
along with some user-provided configuration (e.g. input argu-
ments, CPU/memory requirements, etc.), and wrap this code with
components that isolate the details of the underlying Grid [28–32].
In this way, the requirement of source code modification when
gridifying applications is eliminated. However, output applications
are coarse grained, monolithic Grid applications whose structure
cannot be altered to make better use of Grid resources. For ex-
ample, most of these approaches do not prescribe mechanisms for
parallelizing or distributing individual application components.
Approaches relying on an API-inspired approach to gridifica-

tion unavoidably require modifications to the source code of the
original application [13]. Therefore, in many cases, the resulting
application code is harder to maintain. However, developers have
more control of the internal structure of their applications. On the
other hand, the approaches based on wrapping techniques sim-
plify gridification, but in general prevent the usage of tuningmech-
anisms. This represents a tradeoff between ease of gridification
versus flexibility to configure the runtime aspects of gridified ap-
plications [12]. Precisely, JGRIM targets this tradeoff by avoiding
excessive code modification or provisioning when porting appli-
cations to a Grid, nonetheless providing means to tune Grid appli-
cations. JGRIM preserves the integrity of the application logic by
encouraging developers to concentrate on coding the functionality
of applications, and then non-intrusively adding Grid concerns to
them. Its core API only have to be explicitly used when performing
application tuning. Finally, because of its component based roots,
using JGRIMdoes not differ toomuch fromusing popular program-
ming models for Java such as JavaBeans1 or EJB.2

3. The JGRIM approach

JGRIM [13] is an approach for easily porting applications to
service-oriented Grids. JGRIM simplifies the construction of Grid
applications by allowing users to focus first on the development

1 JavaBeans http://java.sun.com/javase/technologies/desktop/javabeans/docs/
spec.html.
2 Enterprise JavaBeans http://java.sun.com/products/ejb.

http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://java.sun.com/products/ejb


Download English Version:

https://daneshyari.com/en/article/425354

Download Persian Version:

https://daneshyari.com/article/425354

Daneshyari.com

https://daneshyari.com/en/article/425354
https://daneshyari.com/article/425354
https://daneshyari.com

