
Future Generation Computer Systems 24 (2008) 711–719
www.elsevier.com/locate/fgcs

LGF: A flexible framework for exposing legacy codes as servicesI

Bartosz Baliś∗, Marian Bubak, Michal Wegiel

Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
Academic Computer Centre – CYFRONET, Nawojki 11, 30-950 Kraków, Poland

Received 16 February 2007; received in revised form 22 November 2007; accepted 17 December 2007
Available online 6 January 2008

Abstract

Scientific applications, usually written in Fortran or C, need to be adapted to work in modern environments for conducting scientific
computations, which are based on web services or components. This work presents a Legacy to Grid framework (LGF) which enables semi-
automatic virtualization of legacy codes as grid services. In contrast to existing work, LGF goes beyond a simple adapter-pattern approach; it
follows a two-tier design in which the adaptation service layer is loosely coupled with the legacy back end layer. We present the architecture of
our framework, its basic operation, and its capabilities: support for different interaction patterns with a legacy code and for computation migration
to enable fault-tolerance and dynamic load balancing of legacy codes. We also present a case study of our framework’s usage. We conclude with
an evaluation of the impact of the two-layer architecture on the application’s performance and the tradeoff between flexibility and performance by
measuring the overhead of virtualization for different granularities of the legacy code.
c© 2008 Elsevier B.V. All rights reserved.

Keywords: Legacy code; Grid services; Virtualization

1. Introduction

Legacy codes are those libraries, command line applications
or other types of systems that were developed in technologies
older than currently used in modern computing environments.
An example is the current trend in development of systems for
conducting e-Science experiments [7]. While the environments
themselves are built as Grids based on web services or
components following a kind of scientific workflow approach,
the scientific applications which are supposed to run in those
environments are often written in Fortran or C. Rewriting those
applications from scratch or even refactoring them for new
technologies would be either too expensive or impossible due to
the lack of code documentation or specialists in programming
in old technologies. Consequently, tools and frameworks to
adapt legacy codes as services or components are created.

In this paper, we present a Legacy to Grid framework (LGF)
whose goal is a semi-automatic adaptation of legacy codes to

I This work is partly supported by EU-IST Project CoreGrid IST-2002-
004265, and EU-IST Project Virolab IST-027446.

∗ Corresponding author at: Institute of Computer Science, AGH, al.
Mickiewicza 30, 30-059 Kraków, Poland.

E-mail addresses: balis@agh.edu.pl (B. Baliś), bubak@agh.edu.pl
(M. Bubak), mwegiel@gmail.com (M. Wegiel).

grid services, and to aid in the execution management of those
codes. This work follows our previous effort [1,2]. We present
a new design of the LGF framework followed by its operation
scenarios. We also present considerations regarding advanced
execution management of legacy codes supported in our system
by means of dynamic load balancing and fault tolerance
mechanisms. In the practical evaluation part of this paper, we
present a case study to show the usage of the framework,
its basic performance evaluation concerning overhead of the
adaptation, as well as an analysis of the relationship of a legacy
code’s granularity to the adaptation overhead.

2. State of the art

This section presents a comprehensive overview of
representative approaches to adapting legacy codes to modern
environments. After presenting the approaches, we summarize
their deficiencies.

A component wrapping approach to migration of legacy
command-line applications to modern environments is pre-
sented in [6]. To create a wrapper, a specification is needed
which includes the command that is used to run the applica-
tion, pre- and postconditions (expressed as commands to be ex-
ecuted) which must be satisfied before and after the execution

0167-739X/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.12.001

http://www.elsevier.com/locate/fgcs
mailto:balis@agh.edu.pl
mailto:bubak@agh.edu.pl
mailto:mwegiel@gmail.com
http://dx.doi.org/10.1016/j.future.2007.12.001


712 B. Baliś et al. / Future Generation Computer Systems 24 (2008) 711–719

of the legacy application, as well as a specification of the ap-
plication’s input and output. The paper also demonstrates how
wrapped components can be composed in a distributed system
via the JINI technology, using the ACME ADL to describe the
composed application.

In [9], web service wrapping of command line legacy
applications is presented. The work introduces a framework
which can be used to instantiate legacy applications as services,
invoke them in a secure way, and compose them into workflows.
In order to invoke a legacy application, the value of input
parameters, the location of input files, and the location to store
outputs should be provided. This information must be contained
in a Service Map Document which is loaded into the portal used
to run a workflow.

The work presented by in [11] introduces the CAWOM
tool and demonstrates its usability to wrap legacy command
line applications as CORBA components. This approach is
distinguished by the possibility to specify, using a formal
language, the format of the legacy system’s responses. This
allows for more complex interactions with a legacy system,
including synchronous and asynchronous calls, and ultimately
a session-based interaction, for example, with a remote
debugger. While this enables a great flexibility in terms of
the interaction with the legacy system, it also complicates its
adaptation. The tool’s architecture distinguishes a server thread
responsible for interaction with the client, and a mediator thread
which interacts with the legacy system. Though this is hardly
a two-layer architecture, this is a good step towards a flexible
approach, fully exploited by LGF.

Grid Execution Management for Legacy Code Architecture
(GEMLCA) [5] provides a general solution for deployment
of legacy code applications as grid services without code re-
engineering. The GEMLCA high-level architecture comprises:
the front-end layer consisting of a set of grid services providing
an access point for clients, the internal layer managing the
legacy program environment and grid job behaviour, and the
back-end layer virtualizing the grid infrastructure to facilitate
system porting.

Another approach, presented in [8], introduces JACAW
(JAva-C Automatic Wrapper) and MEDLI (MEdiation of
Data and Legacy code Interface) — tools for semi-automatic
conversion of legacy C/C++ interfaces to their Java equivalents.
JACAW uses JNI in order to bridge between C and Java
code. MEDLI allows for conversion of the Java code generated
by JACAW to components that can be deployed using the
Triana [10] workflow composer. This approach lacks the
scalability and flexibility due to the tight coupling of legacy
code with the service container.

Overall the mentioned approaches feature all or some of the
following limitations:

• Practically all mentioned solutions focus on command
line applications and follow a simple adapter pattern to
automatically create legacy code wrappers based on the
specifications of inputs and outputs of the target legacy
application. Almost no solution supports fine-grain legacy
code, such as libraries.

• In terms of the interaction with the legacy code, most of
the approaches do not go far beyond what is available as
a standard grid job submission mechanism (e.g. GEMLCA).
The service front-end is in fact a service-oriented way to
set up parameters, submit a job and retrieve results. Such
a coarse-grain batch-oriented approach lacks the flexibility
needed for automatic workflow discovery, does not support
virtualization of legacy systems (e.g. databases), and
prevents more interactive (e.g. session-based) interactions
with a legacy code.

• In many cases, the legacy code is tightly coupled with
service or component containers (e.g. JACAW/MEDLI).
This limits the flexibility in deployment, execution and
interaction with the legacy code.

3. Legacy to grid adaptation framework

After the analysis of the limitations of existing systems, we
have adopted the following goals for a flexible solution for
adapting legacy codes:

(1) Provide a framework that enables easy adaptation and
deployment of legacy codes that goes beyond simple
adapter-pattern wrapping, and supports both fine-grain and
coarse-grain legacy codes.

(2) Support various interaction patterns with the legacy
code, including synchronous, asynchronous, concurrent,
transactional and session-based interactions.

(3) Enable mechanisms to manage the execution of the legacy
code including the static and dynamic load balancing, as
well as fault tolerance.

Based on those goals, the basic decisions that we have taken
are as follows:

(1) The framework features a two-tier architecture which
comprises the adaptation and management layer and the
legacy backend layer which are loosely coupled.

(2) The legacy backend layer operates in a client fashion
to the adaptation and management layer to enable easy
deployment of the legacy code, migration of computation
and advanced interaction patterns.

In Fig. 1 we present the architecture of the LGF framework.
The system essentially encompasses three distributed compo-
nents: a Service Client, a Service Manager which is in fact a set
of web services (with the associated resources) deployed in
a hosting environment, and a Worker Job. From the life cycle
perspective, we distinguish between permanent and transient
components. The former comprise a static part of the system.
The latter represent dynamically created and destroyed entities
whose lifetime spans its interaction with a single client.

Service client. The cooperation with legacy libraries is fully
transparent, i.e. the clients are not aware of the underlying
legacy code. We assume a thin-client approach so that mobile
resource-constrained devices are not disqualified. Full isolation
between concurrent clients is guaranteed. We do not impose
any restrictions on the technology or language in which clients
are developed — they are only required to support secure
invocations of web service methods.



Download English Version:

https://daneshyari.com/en/article/425486

Download Persian Version:

https://daneshyari.com/article/425486

Daneshyari.com

https://daneshyari.com/en/article/425486
https://daneshyari.com/article/425486
https://daneshyari.com

