
Future Generation Computer Systems 24 (2008) 85–98
www.elsevier.com/locate/fgcs

An on-line replication strategy to increase availability in Data GridsI

Ming Lei∗, Susan V. Vrbsky, Xiaoyan Hong

Department of Computer Science, University of Alabama, Tuscaloosa, AL 35487-0290, United States

Received 31 January 2007; received in revised form 16 April 2007; accepted 19 April 2007
Available online 29 April 2007

Abstract

Data is typically replicated in a Data Grid to improve the job response time and data availability. Strategies for data replication in a Data Grid
have previously been proposed, but they typically assume unlimited storage for replicas. In this paper, we address the system-wide data availability
problem assuming limited replica storage. We describe two new metrics to evaluate the reliability of the system, and propose an on-line optimizer
algorithm that can Minimize the Data Missing Rate (MinDmr) in order to maximize the data availability. Based on MinDmr, we develop four
optimizers associated with four different file access prediction functions. Simulation results utilizing the OptorSim show our MinDmr strategies
achieve better performance overall than other strategies in terms of the goal of data availability using the two new metrics.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Data availability; Data Grid; Data missing rate; Limited storage; Replica strategy

1. Introduction

The popularity of data-intensive scientific applications,
in which millions of files are generated from scientific
experiments and thousands of users world-wide access this
data, has resulted in the emergence of Grid computing. In
a Grid system, the resources of many computers, spanning
geographic locations and organizations, are utilized to solve
large-scale problems. These geographically distributed systems
with loosely coupled jobs can require the management of
an extremely large number of data sets. A Grid computing
system for processing and managing this very large amount of
distributed data is a Data Grid. Examples of Data Grids are
the Biomedical Informatics Research Network (BIRN) [22],
the Large Hadron Collider (LHC) [23] at the particle physics
center CERN, the DataGrid project (EDG) [21] funded by
the European Union, now known as the Enabling Grids
for E-SciencE project (EGEE) [5], the International Virtual
Observatory Alliance (IVOA) Grid community Research

I Earlier versions of this paper were presented at the Third International
Workshop on Networks for Grid Applications GridNets 2006 held in San José,
California, USA, October 1–2, 2006.

∗ Corresponding author. Tel.: +1 205 566 4192.
E-mail addresses: mlei@cs.ua.edu (M. Lei), vrbsky@cs.ua.edu

(S.V. Vrbsky), hxy@cs.ua.edu (X. Hong).

Group [24] and physics Data Grids [6,12]. Data Grids require
users to share both data and resources, and the management
of such a large volume of data sets has posed a challenging
problem in how to make the data more approachable and
available to the users.

A common solution to improve availability and file access
time in a Data Grid is to replicate the data. When data is
replicated, copies of data files are created at many different
sites in the Data Grid [3]. Deciding on where and when to make
the data copies in the distributed nodes is a problem common
to all data replication schemes for Data Grids. Earlier research
on data replication [2,4,8,11,14,16] focused on decreasing the
data access latency and the network bandwidth assumption.
As bandwidth and computing capacity have become relatively
cheaper, the data access latency can drop dramatically, and how
to improve the data availability and system reliability becomes
the new focus.

The dynamic behavior of a Grid user, in combination
with the large volume of datasets, makes it difficult to make
decisions concerning data replication to meet the system
availability goal [15]. In a Data Grid system, there are hundreds
of clients across the globe who will submit their job requests,
each of which will access multiple files to do some type of
analysis. In data-intensive applications, when a job accesses a
massive-size file, the unavailability of that file can cause the
whole job to hang and the potential delay of the job can be

0167-739X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.04.009

http://www.elsevier.com/locate/fgcs
mailto:mlei@cs.ua.edu
mailto:vrbsky@cs.ua.edu
mailto:hxy@cs.ua.edu
http://dx.doi.org/10.1016/j.future.2007.04.009


86 M. Lei et al. / Future Generation Computer Systems 24 (2008) 85–98

unbounded. In large-scale data-intensive systems, hundreds of
nodes will be involved and any node failure or network outage
can cause potential file unavailability. As a result, there has
been an increase in research focusing on how to maximize the
file availability. Data replication strategies to improve the data
availability have been proposed in [13,15], but have assumed
unlimited storage for replicas.

In this paper, we address the system-wide data availability
problem assuming limited replica storage. We present two
new data availability metrics, the System File Missing Rate
and the System Bytes Missing Rate. (We are not aware of
any other research at this time that utilizes any system data
availability metrics.) We then model the problem in terms of an
optimal solution in a static system. More importantly, for on-
line processing of file replication, we propose a novel heuristic
algorithm that maximizes the data availability by Minimizing
the Data Missing Rate (MinDmr) for limited storage resources
without sacrificing the data access latency. Based on MinDmr,
we present four optimizers that are associated with four
different prediction functions. Our test results on the popular
OptorSim [9] show that our four MinDmr replica schemes
perform better overall than the Binomial economical replica
scheme, Zipf economical replica scheme [2,4], LFU and LRU
for the two metrics.

The rest of the paper is organized as follows. We describe
related work in Grid systems in Section 2. Section 3 presents
the two measures (the System File Missing Rate and the System
Bytes Missing Rate), and discusses the system model. We
present our analytical model and the dynamic replica algorithm
in Section 4. In Section 5, we describe our simulation results
based on the OptorSim, a simulator designed by the European
Data Grid Project [5]. In the final section, we conclude our
paper and describe future work.

2. Related work

Work on data availability in Grid systems initially focused
on decreasing the data access latency and the network
bandwidth assumption. In [14], the six replica strategies
(No Replica, Best Client, Cascading Replication, Plain
Caching, Caching plus Cascading Replica and Fast Spread)
are simulated for the three user access patterns (random
access, small temporal locality, and small geographical and
temporal locality). The simulation results show that the best
strategy has significant savings in latency and bandwidth
consumption if the access patterns contain a moderate amount
of geographical locality. In [2,4], a replica scheme based on the
economical-model (Eco) has been proposed. The authors use
an auction protocol to make the replica decision for long-term
optimization. The authors show the scheme outperforms other
replica strategies with sequential file access patterns. We note
that in Section 5 we compare our proposed strategies to this
economical-model.

In [16], Szymaniak et al. present the HotZone algorithm
to place replicas in a wide-area network, so that the client-to-
replica latency is minimized. They use the GNP [8] technique
to model the Internet as an M-dimensional space and all nodes

are landmarked into different network regions. HotZone places
replicas on nodes that, along with their neighboring nodes,
generate the highest load. Sang-Min Park et al. in [11] propose
a dynamic replica replication strategy, called HBR, to reduce
data access time by avoiding networking congestion in a Data
Grid network. The HBR algorithm benefits from ‘network-level
locality’, which indicates that the required file is located at the
site which has the broadest bandwidth to the site of the job
execution.

Subsequent work focused on maximizing file availability
in a Grid system. In their early work, Schintke and Reinefeld
present an analytical model in [15] for determining the optimal
number of replica servers, catalog servers and catalog sizes to
guarantee a given overall reliability in the face of unreliable
components. In [13], Ranganathan shows a dynamic model-
driven replication approach in which peers create replicas
automatically in a decentralized fashion. Both [13] and [15]
propose algorithms to meet the data availability goal based on
the assumption that the total system replica storage is large
enough to hold all the data replica copies. Each file will be
replicated to the arbitrary number of copies needed to achieve
its availability goal without any discrimination, even if the file
will be only be accessed one time in its whole life span. One
could argue limited storage resources should not be wasted to
hold so many copies of such infrequently used files.

In [17] the authors present a design and implementation
of a file-based replica management Grid middleware that was
developed within the EDG Project. It was designed so that
user communities can adjust the replica behavior based on their
quality of service requirements. The goal of this work is to
minimize the file access/transfer time. The optimization service
gathers latency information from the network and storage
element monitoring service to determine which network link
should be used to minimize transfer times. Experimental results
show their approach significantly reduces wide area transfer
times. They do not consider limited storage for replicas.

In [18], the authors study the effect of replication schemes
and Grid scheduling heuristics on turnaround time. They
assume a set of domains, in which each domain contains a
replica server and many computing sites. They consider several
replication schemes including centralized dynamic replication
and distributed dynamic replication, and several scheduling
strategies, such as shortest turnaround, least relative load
and data present. Results indicate that dynamic replication
algorithms are the most successful in reducing the job
turnaround time. The authors do consider limited storage for
replicas, but they only consider the LRU algorithm for replica
replacement.

Dynamic replication algorithms for multi-tiered Data Grids
are presented in [20]. The authors propose two dynamic replica
algorithms, Simple Bottom Up and Aggregate Bottom Up, for
the multi-tiered Grid. They also develop a Data Grid simulator,
called DRepSim. Performance results indicate both of their
algorithms can reduce the average response time of data access
compared to a static replication strategy in a multi-tiered Grid.
The strategies in this work are applicable only to multi-tiered
Grids.



Download English Version:

https://daneshyari.com/en/article/425509

Download Persian Version:

https://daneshyari.com/article/425509

Daneshyari.com

https://daneshyari.com/en/article/425509
https://daneshyari.com/article/425509
https://daneshyari.com

