
Future Generation Computer Systems 24 (2008) 121–132
www.elsevier.com/locate/fgcs

High-level application-specific performance analysis using the G-PM toolI

Roland Wismüllera,∗, Marian Bubakb, Włodzimierz Funikac

a BSVS, University of Siegen, Germany
b Institute of Computer Science AGH-UST, Academic Computer Centre — CYFRONET, Kraków, Poland

c Institute of Computer Science AGH-UST, Kraków, Poland

Received 26 September 2006; received in revised form 31 January 2007; accepted 26 March 2007
Available online 6 April 2007

Abstract

The paper presents an approach to overcome a traditional problem of parallel performance analysis tools: performance data often are too
low level and cannot easily be mapped to the application’s code structure, e.g. its execution phases. The G-PM tool offers the user an easy but
flexible means to define her/his own high-level, application specific metrics based on existing metrics and application events. We discuss the basic
concepts of G-PM from the user’s point of view, its design, and some implementation issues, including the language PMSL which supports the
specification of user-defined metrics. In the main part of the paper, we present a case study based on a real world medical application from the EU
funded CrossGrid project, which demonstrates the concept of user-defined metrics as well as its usefulness in practice.
c© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Most of today’s applications that require high computing
performance are based on parallel programming using the
message passing paradigm, as it is supported by MPI [17].
For this class of applications, tools that allow us to measure
and improve their performance characteristics are vital for the
applications’ success. Generally, performance analysis tools
can be based on three different techniques: tracing, profiling
and online analysis. With tracing, performance analysis is done
in two steps: while the application is executing, relevant events
(such as the beginning and the end of a call to the MPI Send()
communication routine) and their time stamps are written to a
file. In a subsequent offline step, different performance metrics
(e.g. time spent in communication) can be computed from
this trace file. Profiling avoids the necessity to store large
trace files by computing a predefined set of metrics online,
during the application’s execution. These metrics typically are

I Partially funded by the European Commission (project IST-2001-32243,
CrossGrid) and KBN (grant 4 T11C 032 23).

∗ Corresponding address: Operating Systems and Distributed Systems
BSVS, University of Siegen, Holderlinstr. 3, 57068 Siegen, Germany. Tel.: +49
271 740 4050; fax: +49 271 740 4049.

E-mail addresses: roland.wismueller@uni-siegen.de (R. Wismüller),
bubak@agh.edu.pl (M. Bubak), funika@agh.edu.pl (W. Funika).

summaries over the whole execution. Online analysis can be
viewed as a compromise between profiling and tracing, since
– as with profiling – the tool computes performance metrics
online, while on the other hand, – as with tracing – the
information is still resolved in time. Different from both the
other approaches, online analysis tools present the performance
results while the application is executing and allow definition of
new measurements based on these results.

Today, there is already a number of sophisticated perfor-
mance tools supporting the analysis of parallel applications.
In the report [14] the authors list 26 performance related tools
just in the context of grid computing. However, even with these
tools it is still difficult for programmers to optimize their appli-
cations based on the provided information. This has two major
reasons:

• First, the information is often too low-level, since it is
usually related to communication or even hardware events.
For example, tools for MPI typically provide the time
spent in MPI Barrier() or MPI Recv(), but they fail to
provide information about load imbalance. This is because in
general the way for measuring the metrics “load imbalance”
is application specific. While in shared memory applications,
load imbalance can usually be measured by comparing the
waiting time at a barrier in the individual threads, message
passing applications can also synchronize via messages. In

0167-739X/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2007.03.008

http://www.elsevier.com/locate/fgcs
mailto:roland.wismueller@uni-siegen.de
mailto:bubak@agh.edu.pl
mailto:funika@agh.edu.pl
http://dx.doi.org/10.1016/j.future.2007.03.008


122 R. Wismüller et al. / Future Generation Computer Systems 24 (2008) 121–132

such cases, the receive delay must be used as a basis for
measuring the load imbalance (cf. Section 5.1).

• Second, linking the displayed performance data to the source
code and the programmer’s mental model of the application
is rather difficult. The latter includes the structuring of
the application’s execution in well defined phases, e.g. the
iterations of a numerical solver and the different phases
within one iteration. As another example, consider a solver
for linear equation systems based on LU-decomposition.
Such a solver will consist of two phases: the decomposition
phase and the solving phase. Performance information
aggregated over all of these phases often is not sufficient to
find specific bottlenecks in one phase. Tools based on tracing
have some advantage here, since the information is resolved
in time. However, it may be hard for the user to identify
program phases from a time line diagram, which just shows
program states and exchanged messages. In principle, the
traced events could contain a link to the source code, but this
would result in large amounts of data that need to be stored
and analysed. In addition, even line number information
such as lu.f:231 does not easily allow identification of
higher level program phases.

In our research, we address both difficulties by allowing
the user to specify higher-level, application specific metrics at
run-time. The online performance analysis tool G-PM, which
originally has been designed for use in the grid, supports
this via a Performance Metrics Specification Language, called
PMSL. It allows, for example, definition of an application-
specific metrics for load imbalance, as shown in Section 5.1. A
distinguishing feature of PMSL is that the definition of metrics
can also take into account events in the application. On the one
hand, this allows to compute metrics from these events, e.g. in
an iterative solver we can compute the convergence rate from
an “iteration” event, which has the current residual error as
its parameter. On the other hand, events can be used to mark
and to identify specific program phases, which allows metrics
related to these phases to be defined(cf. Section 5.3). These
events are created by a small amount of user-defined source
code instrumentation.

The main contribution of this paper is a case study presented
in Section 5, which shows the usefulness of PMSL for
the analysis of a real world application from the medical
domain. In Section 2 we briefly discuss other approaches for
higher-level performance analysis, while Section 3 outlines
the main concepts of G-PM, especially its support for user-
defined metrics and the PMSL language. An outline of G-PM’s
implementation is presented in Section 4.

2. Related work

The desire for tools supporting performance analysis at a
higher level of abstraction is addressed by current research
in several different ways. A rather ambitious approach is
automatic performance analysis, which points the programmer
to the exact cause and location of a bottleneck. Research
in this field is done in, e.g. the Paradyn [22], KappaPi [8],
EXPERT [32], APART [1], Aksum [12] and Periscope [15]

projects. Automatic performance analysis is typically based
on a (more or less) explicitly formalized description of
performance properties and/or possible application bottlenecks.
Based on this description, tools either perform an offline
analysis of recorded trace files (KappaPi, EXPERT) or profiles
(APART, Aksum), or they perform a hypothesis driven online
search (Paradyn, Periscope).

A more pragmatic solution is the provision of higher-level
metrics. E.g. the EXPERT tool [32] computes reasons for
performance loss and represents them in a three-dimensional
hierarchy, which the user can navigate. Ideally, these higher-
level metrics should, however, not be hard-coded in the tool,
but definable by the user. The G-PM tool presented in this paper
exploits exactly this idea.

Besides G-PM, there are several other tools, which provide
configurable metrics: Paradyn uses the language MDL [18] to
define all of the online metrics it allows to be measured. In
a similar spirit, but using a trace-based approach, EXPERT
supports configurable metrics via the EARL language [31],
which is based on the scripting language TCL. The goal
in both cases is, however, to support the tool implementor,
not the tool user. Thus, the metrics are defined at a rather
low, implementation-orientated level, which is not suited
for supporting user-defined metrics due to its complexity.
ASL [10] and its Java descendant JavaPSL [11] enable a
higher-level specification of performance properties used for
automatic bottleneck detection. Although these languages are
still intended to be used by tool developers, and performance
properties are not quite the same as performance metrics, PMSL
predominantly has its roots in the ASL. A really user-defined
data analysis was first supported by the Pablo [23,27] and
Paraver [9] tools. In contrast to G-PM, however, these tools
are based on offline processing of trace data and offer weaker
support for application specific metrics.

User-defined instrumentation, which is one of the building
blocks of application-specific metrics in G-PM, is also
supported by many other performance analysis tools. E.g.
TAU [21,24] amongst other things allows instrumentation of
the code with timers to measure the CPU time of program
phases. The SCALEA tool [26] supports application-specific
instrumentation via directives inserted into the application’s
source code. But in all these approaches, the instrumentation
already implies a particular metrics, which is fixed at compile
time, while in G-PM, many different metrics can be defined at
run-time, using the same instrumentation.

3. A user’s view of G-PM

G-PM supports online performance analysis for parallel MPI
applications on the grid. Thus, it allows the user to define
performance measurements during the application’s run-time
and also to examine their results while the application is still
running. The results typically are numerical time series, i.e. the
values of the measured metrics which evolve over time. G-
PM can either display the current values, e.g. as bar graphs
(cf. Fig. 6), pie charts, and matrix diagrams, or can show their
temporal evolution, e.g. as curves over a time axis (cf. Fig. 8).



Download	English	Version:

https://daneshyari.com/en/article/425512

Download	Persian	Version:

https://daneshyari.com/article/425512

Daneshyari.com

https://daneshyari.com/en/article/425512
https://daneshyari.com/article/425512
https://daneshyari.com/

