Future Generation Computer Systems 62 (2016) 40-50

Contents lists available at ScienceDirect 2 S
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs ==
Key based data analytics across data centers considering bi-level @CmssMark

resource provision in cloud computing”

Jiangtao Zhang *", Lingmin Zhang *¢, Hejiao Huang <, Zeo L. Jiang®¢, Xuan Wang

a,d,x

2 School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
b public Service Platform of Mobile Internet Application Security Industry, Shenzhen 518057, China

¢ Shenzhen Key Laboratory of Internet of Information Collaboration, Shenzhen 518055, China

d Shenzhen Applied Technology Engineering Laboratory for Internet Multimedia Application, Shenzhen 518055, China

HIGHLIGHTS

A key based mechanism is proposed to place reducer for data analysis across data centers.

The problem is formalized as a bi-level programming.

A unified genetic algorithm is proposed to facilitate the placement.

The algorithm can outperform the baseline and state-of-the-art algorithms by 49% and 40%, respectively.

ARTICLE INFO

Article history:

Received 14 January 2016
Received in revised form

24 February 2016

Accepted 14 March 2016
Available online 6 April 2016

Keywords:

Reducer placement
Resource provision
Hadoop across data centers
Distributed cloud

ABSTRACT

Due to the distribution characteristic of the data source, such as astronomy and sales, or the legal
prohibition, it is not always practical to store the world-wide data in only one data center (DC). Hadoop
is a commonly accepted framework for big data analytics. But it can only deal with data within one DC.
The distribution of data necessitates the study of Hadoop across DCs. In this situation, though, we can
place mappers in the local DCs, where to place reducers is a great challenge, since each reducer needs
to process almost all map output across all involved DCs. In this paper, a novel architecture and a key
based scheme are proposed which can respect the locality principle of traditional Hadoop as much as
possible while realizing deployment of reducers with lower costs. Considering both the DC level and the
server level resource provision, bi-level programming is used to formalize the problem and it is solved
by a tailored two level group genetic algorithm (TLGGA). The final results, which may be dispersed in
several DCs, can be aggregated to a designative DC or the DC with the minimum transfer and storage cost.
Extensive simulations demonstrate the effectiveness of TLGGA. It can outperform both the baseline and
the state-of-the-art mechanisms by 49% and 40%, respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

or expensive long distance links. It provides abundant computation
and storage capacity [1] and has been widely adopted to support

Distributed cloud consists of multiple geo-distributed data various services, especially for data intensive applications [2],
centers (DCs) which are connected by dedicated high-speed links such as socially aware services [3], astronomy [4] and internet

of things [5]. Because these data have sheer size and even come
from disparate geographical locations, it is impractical to move
such heavy geo-spanned data together and store all data in one

* Part of this paper is to appear in I0TBD 2016. This new version contains
substantial revisions with new architecture designs, analysis, simulation results and
discussions.

* Corresponding author at: School of Computer Science and Technology, Harbin
Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China. Tel.:
+86 755 260337809.

E-mail addresses: jiangtaozhang@aliyun.com (J. Zhang), xbmuzlm@gmail.com
(L. Zhang), hjhuang@hitsz.edu.cn (H. Huang), zoeljiang@hitsz.edu.cn (Z.L. Jiang),
wangxuan@insun.hit.edu.cn (X. Wang).

http://dx.doi.org/10.1016/j.future.2016.03.008
0167-739X/© 2016 Elsevier B.V. All rights reserved.

DC. Some countries, such as the EU, have the data security laws
require some data to be stored locally. Generally, data can be stored
in DCs closer to data generating sources to facilitate the more
frequent local data analysis with smaller access delay. For example,
the US census data are collected and stored by each state [6].
The huge remote sensing data are stored in geo-distributed data
centers [4]. Although these data are managed regionally, they also


http://dx.doi.org/10.1016/j.future.2016.03.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.03.008&domain=pdf
mailto:jiangtaozhang@aliyun.com
mailto:xbmuzlm@gmail.com
mailto:hjhuang@hitsz.edu.cn
mailto:zoeljiang@hitsz.edu.cn
mailto:wangxuan@insun.hit.edu.cn
http://dx.doi.org/10.1016/j.future.2016.03.008

J. Zhang et al. / Future Generation Computer Systems 62 (2016) 40-50 41

Table 1
Differences between traditional Hadoop and Hadoop across data centers.

Items Traditional Hadoop across data centers
Hadoop

Placement of reducers ~ Randomly across Across multiple candidate
intra-DC racks DCs

Reduce input copying Intra-DC Across DCs

Reduce input storage Intra-DC The input data should be

copied to and stored in the
DC where the reducer locates

High
Level:

DC
level
Low

Level:

Server
level

Flattened network topology

Fig. 1. Reducer placement for distributed data analysis considering both the DC
and the server level resource provision in distributed cloud.

need to be processed collaboratively for a common purpose [6,4].
How to process such distributed data has attracted extensive
attention of scholars [6,7] and practitioners (e.g., MapR, one of the
main Hadoop suppliers, claims to support table replication across
DCs in its recent version and indicates that the Hadoop framework
is not necessary to be limited to one DC in the future [8]).

Hadoop, the open source version of MapReduce, which has
been widely used in big data analytics, does not support data
analysis across DCs in the current versions [9]. This is due to the
great differences in data analytics introduced by multiple DCs. The
main differences are roughly summarized in Table 1. (We used the
italic format to indicate the general MapReduce terminologies.) For
detailed information, please refer to Section 3.

To process data across DCs, a cloud service provider (CSP)
should first determine which DCs are used to launch Java virtual
machines (VMs) for MapReduce tasks, then the concrete servers
to host the VMs. Fig. 1 illustrates the two phases. In the single-
DC scenario, basically, the network within one DC is a flattened
two level topology [9,10]. Considering that the intermediate map
results are dispersed across the racks and each reducer needs
to reduce almost all the mappers output, MapReduce does not
sedulously select the location of reducers [9,10].

In the multi-DC scenario, the map output is stored locally
in each DC. The scheme that reduces the data in each DC and
then aggregates the intermediate results may change the final
result (e.g., to calculate the global commodities sales proportion)
or be inefficient [11]. So the universal case is to move all the
intermediate data to the DC where the reducer locates. Generally,
in each DC, the intermediate output partitioned to a reducer has a
different size. The intuitive method is to place the reducer in the
DC where more intermediate data partitioned to it are stored. But
the premise is that the intermediate data volume should be known
in advance. Fortunately, MapReduce has provided samplers which
can be used to sample a subset of key space produced by mappers to
approximate the distribution of keys, and estimate the data volume

partitioned to one reducer. This scheme has been recommended by
the definitive Hadoop guide, in chapter 8 [9] and used by other
work [6]. The analysis result of data used for sampling can be
reused later.

This scheme makes it possible to save the following four
kinds of resources in the multi-DC scenario. First, bandwidth cost.
The huge volume data copy across long distance links will incur
greater bandwidth costs, increase job delay and even deteriorate
availability. Second, physical machines (PMs) cost. The price of
computation resources of PMs in different DCs varies widely [12].
Placing more reducers in the expensive DC will lead to more costs.
Third, storage cost. Because the data transfer across DCs will take
more time, the map output should be pre-copied to the target
DC, where the reducer locates and stored in the DC in the whole
reduce phase. This leads to additional storage costs. Since DCs also
differ in the pricing of storage [13], large volume data should
avoid being stored in the expensive DC. Bandwidth costs and
PM costs (including computation and storage) contribute about
60% to the costs of a DC [14], another key contribution is power.
Power draw accounts for 15% not including cooling and power
distribution [14] and is the fourth cost to be optimized. CSP can
further cut power costs by exploiting various electricity prices
of distributed DCs [15] when placing reducers. The locations of
reducers have a big influence on costs and services.

Each reducer can be assigned to a slot equipped with the
same determined computation and memory resources in Hadoop
1.0. Hadoop 2.0 (YARN) has permitted the configuration of CPU
and memory of mappers and reducers [16], so as to capture the
heterogeneous capability of PMs and match the volume of data to
be processed, hence improve the resource efficiency. Inside each
DC, the different size VM can be consolidated so that fewer PMs
are used and more power is saved.

In recent years, several MapReduce-like frameworks, such as
G-Hadoop [7] and G-MR [6], have been proposed to process
distributed data across DCs. G-Hadoop respects the locality
principle and prefers to map data locally. It is flexible and can
embrace any schemes in the hierarchical architecture. By default,
it uses the traditional scheme to place reducers, i.e., randomly
placing reducers in involved DCs. All intermediate data partitioned
to one reducer are then copied to the DC where the reducer locates.
G-MR [6] uses an advanced scheme by defining a single directional
weighted graph to depict the data placement and transfer path.
All input data in each DC should be partitioned to equal size
partitions. The nodes of the graph are the combination of partitions
in different DCs before map or reduce phase and the edge is the
transfer path from one node to another. Some tactics are further
introduced to avoid nodes and paths catastrophes. But just as the
analysis in Section 2, it is hard to determine the partition size. The
coarse-grained partition and the introduced tactics will offset the
optimality of the solution. Furthermore, it cannot address power
cost and can only be used when the data are associative, i.e., the
iterative and hierarchical reduce will not change the final result.

Focusing on the distributed data analytics, this paper explores
the problem of placement of the reducer VMs costs efficiently
across the involved DCs. The main contributions are as follows:

1. The differences between data analytics inside one DC and across
DCs are analyzed in detail. Based on the analysis, an architecture
and a key based scheme are proposed to determine the location
of reducers and optimize data transfer cost. This method can
achieve more accurate data copy and further indicate the
configuration of reducers based on the data volume partitioned
to it. It is applicable to all data no matter whether the data are
associative or not.

2. Considering both DC determination and the last VMs placement
in the servers, as well as the costs of data transfer, storage,
computation and power, the problem is formulated as a 0-1
integer linear bi-level programming.



Download English Version:

https://daneshyari.com/en/article/425536

Download Persian Version:

https://daneshyari.com/article/425536

Daneshyari.com


https://daneshyari.com/en/article/425536
https://daneshyari.com/article/425536
https://daneshyari.com

