
Future Generation Computer Systems 62 (2016) 119–127

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Highly privacy-protecting data sharing in a tree structure
S. Canard a,∗, J. Devigne b

a Orange Labs, Applied Crypto Group, Caen, France
b DGA Maîtrise de l’information, Bruz, France

h i g h l i g h t s

• We propose a way to store data in a non trusted cloud storage provider.
• Wemake use of the advanced cryptographic tool called ‘‘proxy re-encryption’’.
• We provide a way for customers to share files and folder by modifying the standard proxy re-encryption paradigm.
• We show that a true implementation of such system is very efficient and can easily be embedded into commercial products.

a r t i c l e i n f o

Article history:
Received 1 May 2015
Received in revised form
14 November 2015
Accepted 27 January 2016
Available online 2 March 2016

Keywords:
Cloud storage
Confidentiality
Privacy
Cryptography

a b s t r a c t

In this paper, we investigate the way to efficiently implement a highly privacy-protecting data sharing
system in a cloud storage context. We suppose that several customers want to share some sensitive and
personal data that are stored on a non-trusted cloud storage system, in such a way that the latter has no
way to obtain the data in clear. For this purpose, we make use of an advanced cryptographic tool called
a ‘‘proxy re-encryption’’ scheme. In this context, our contribution is twofold. We first modify existing
proxy re-encryption schemes in such a way that customers can nowmanage dynamically a tree structure
for their shared document, which was not possible with existing systems. We then present the first true
implementation of such system where each client makes use of a smartphone to upload, download and
share his/her documents. This way, we show that such system is really practical for a real-life use.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Network data storage is awidespread option and it is today easy
to find such solutions for any digital content. A key issue is the
confidentiality of stored data, which becomes even trickier when
the owner wants to share her/his data. It is then crucial to offer
solutions that combine storage, sharing and confidentiality of data,
without changing the user experience.

Cloud storage is a system by which users can store their
personal and sensitive data in a ‘‘secure way’’, such that they are
later able to access their data anywhere, at any time, from any
authorized devices. The most interesting case is when the cloud
storage is dynamic since it permits to control the access to the
data by adding/deleting new devices and users. The idea behind
cloud storage is that data are stored as if they were in a safe, where
the cloud storage plays the role of an access control to this safe.

∗ Corresponding author.
E-mail addresses: sebastien.canard@orange.com (S. Canard),

julien.devigne@gmail.com (J. Devigne).

In reality, the data are encrypted but, most of the time, the cloud
server has the decryption key andmanages the rights for each user
to access or not the data.

This is a critical problem in the case of private sensitive data
such as administrative documents (e.g. identity cards, bills or pay
sheets) or, more generally, personal data. This is also a tricky
point in the case of confidential documents owned by a business
enterprise and shared between collaborators or with trading
partners. In fact, this problem can be easily solved by simply
encrypting the data before sending it to the cloud/safe. However,
this only provides a backup service, and not a secure storage one
with practical features. More precisely, it does not work when one
wants to share the stored data with other customers, or between
his own devices.

One solution is to share the decryption key but this is naturally
a ‘‘bad’’ solution, especially regarding security. The compromise
of one device (lost or stolen) necessitates all remaining devices
to update their keys and all the stored documents should be re-
encrypted again, with a new generated key.

Another solution consists in duplicating the data for all
authorized entities or, at most, the secret key used to encrypt

http://dx.doi.org/10.1016/j.future.2016.01.019
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.01.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.01.019&domain=pdf
mailto:sebastien.canard@orange.com
mailto:julien.devigne@gmail.com
http://dx.doi.org/10.1016/j.future.2016.01.019


120 S. Canard, J. Devigne / Future Generation Computer Systems 62 (2016) 119–127

the large file (in case of an encapsulation mechanism). Regarding
security, this solution is much better since the compromising of
one device only necessitates the deletion of the related encrypted
documents, but does not impact other devices/entities. The main
issue regarding this solution is its flexibility. More precisely, if one
wants to withdraw the ‘‘read’’ right to all his/her documents, the
server has to delete all corresponding entries. And if one wants
to later share a document with someone else, he/she has to be
online to create the new version of the encrypted secret key. New
solutions have recently emerged by using advanced cryptography
which allows to combine privacy and functionalities, and seem to
be the best compromise between security, efficiency and usability.

One can find different ways to solve the above problem in the
cryptographic literature. Some papers make use of attribute based
encryption [1,2], with the particularity that it can easily manage
hierarchical structures. It seems also possible to use broadcast
encryption [3] to provide a way to share an encrypted document
with a group of users. But some others prefer to use proxy re-
encryption [4,5] since it permits to easily manage simple sharing
between customers. In this paper,we focus on the latter since, from
our point of view, it is best suited for a peer-to-peer sharing in non
hierarchical structure, on which we have worked.
Proxy re-encryption for secure storage. In [5], Ateniese
et al. have proposed a privacy-preserving architecture for dis-
tributed storage which makes use of a proxy re-encryption (PRE)
scheme [4]. In a nutshell, a PRE allows a user to delegate its decryp-
tion capability in case of unavailability. To do so, this user, Alice,
computes a re-encryption key rkA→B which is given to a proxy. The
key rkA→B allows the proxy to transform a ciphertext intended to
Alice into one intended to Bob. While doing this, the proxy cannot
learn any information on the plaintexts nor any secret key.

A similar PRE based storage system has also been proposed in
the case of cloud storage in [6]. With such a system, where the
cloud plays the role of the proxy, the access to a plaintext is only
permitted to authorized users, while the cloud cannot derive the
plaintext from the stored ciphertext. A data can e.g. be stored on a
dedicated cloud storage using Alice’s public key. If Bob can access
this document, the proxy/cloud makes use of the re-encryption
key from Alice to Bob. Similarly, if Alice owns several devices,
one document encrypted with the key on one of them can be re-
encrypted for another one. This is done without needing them to
share the same secret decryption key, and in a private way since
the storage provider does not obtain the data in plain.

The (cloud) storage system of Ateniese et al. [5] makes use
of a (1) unidirectional and (2) single-hop scheme, which means
(1) that with a re-encryption key rkA→B, a proxy cannot translate
Bob’s ciphertexts into ciphertexts intended to Alice and (2) that
once a message has been moved into a ciphertext intended to
Bob, no more transformation on the new ciphertext intended to
Bob is possible. It also exists in the literature several PRE schemes
which are bidirectional, meaning that they allow a symmetrical
transformation, andmulti-hop, meaning that several ‘‘consecutive’’
translations of ciphertexts are possible. The way to manage at the
same time multiple users and multiple devices in such system
has recently been proposed by Canard and Devigne [7]. They thus
design the concept of combined proxy re-encryption where one
canmanage at the same time unidirectional and single-hop PRE (to
share documents between users) and bidirectional and multi-hop
PRE (to share document between several devices of a single user).
Our approach. In this paper, we focus on the fine-grain
management of the rights. A standard PRE scheme has an ‘‘all or
nothing’’ sharing property. If the re-encryption key is generated by
Alice, then the proxy can re-encrypt for Bob any document initially
encrypted to Alice. There is no way for Alice to restrict what the
proxy can re-encrypt or not, except by trusting it. But if the storage

Fig. 1. A tree structure.

space is structured as a tree (as shown in Fig. 1), Alice may want to
only share a specific folder, or a specific files, but not all her files.

For this purpose, it exists conditional PRE. In such variant, the
encryption process is related to a chosen condition c1, and the re-
encryption key is generated under a condition c2. Then, if c1 = c2,
the re-encryption process outputs a value that can be normally
decrypted, whereas if c1 ≠ c2 then the decryption process outputs
an error message.

But this is not enough in our case. In fact, this can only be helpful
tomanage a file by file sharing, but not a true hierarchy, since there
is no possible link between a file and its mother’s folder. We need
more work that we have done in this paper by designing a two
directions conditional PRE, as illustrated in Fig. 2.

We then attach to each uploaded file a unique condition, de-
fined during the encryption process, and denoted γf2,1,1 for file f2,1,1
for example. We then obtain the ciphertext Enc(pkA, f2,1,1, γf2,1,1),
using Alice’s public key pkA. If Alice wants to e.g. give the rights to
Bob for folder F2, she computes a re-encryption key, from Alice to
Bob, under a condition related to F2. Such re-encryption key is de-
noted rkA→B,F2 and is sent to the proxy. This re-encryption permits
a vertical transformation between users, if and only if the condi-
tions match. We then add an horizontal transformation inside the
tree, using additional re-encryption keys such as rkf2,1,1→F2,1,A or
rkF2,1→F2,A. These keys permit to go back up the tree from a file to
the root folder by modifying the condition attached to the cipher-
text.

More precisely, for each couple (file, folder) or (folder, folder)
in the path from the file to the root, Alice needs to compute a re-
encryption key (but only once for each link between folders). For
example, there is a re-encryption key rkF2,1→F2,A which permits to
modify the condition related to the ciphertext (to which this re-
encryption is used), without modifying the underlying public key.
The whole result, for our example, is given in Fig. 2.

Finally, when the encrypted file is related to a condition for
which it exists a re-encrypted key from Alice to Bob (in our



Download English Version:

https://daneshyari.com/en/article/425544

Download Persian Version:

https://daneshyari.com/article/425544

Daneshyari.com

https://daneshyari.com/en/article/425544
https://daneshyari.com/article/425544
https://daneshyari.com

