
Future Generation Computer Systems 55 (2016) 147–162

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

HyperFlow: A model of computation, programming approach and
enactment engine for complex distributed workflows
Bartosz Balis
AGH University of Science and Technology, Department of Computer Science, Krakow, Poland

h i g h l i g h t s

• A model of computation and system for scientific workflows, HyperFlow, is proposed.
• HyperFlow aims at high development productivity of skilled programmers.
• The HyperFlow Model of Computation combines simplicity with high expressiveness.
• Complex workflow patterns can be implemented using a simple syntax.
• HyperFlow enables a fully distributed and decentralized workflow execution.

a r t i c l e i n f o

Article history:
Received 30 March 2015
Received in revised form
13 August 2015
Accepted 28 August 2015
Available online 26 September 2015

Keywords:
Scientific workflows
Process networks
Workflow programming
Workflow patterns
Workflow enactment

a b s t r a c t

This paper presents HyperFlow: a model of computation, programming approach and enactment engine
for scientificworkflows.Workflowprogramming inHyperFlow combines a simple declarative description
of theworkflow structurewith low-level implementation ofworkflow activities in amainstream scripting
language. The aim of this approach is to increase the programming productivity of workflow developers
who are skilled programmers and desire a programming experience similar to the one offered by amature
programming ecosystem. Combining a declarative description with low-level programming enables
elimination of shimnodes from theworkflowgraph, considerably simplifyingworkflow implementations.
The workflow description is based on a formal model of computation (Process Networks) and is
characterized by a simple and concise syntax, utilizing just three key abstractions—processes, signals and
functions. Yet it is sufficient for expressing complex workflow patterns in a simple way. The adopted
model of computation implemented in the HyperFlow workflow engine enables fully distributed and
decentralized workflow enactment. The paper describes HyperFlow from the perspective of its workflow
programming capabilities, the adopted model of computation, as well as the enactment engine, in
particular its distributed workflow enactment capability. The provenance model and logging features are
also presented. Several workflow examples derived from other workflow systems and reimplemented in
HyperFlow are extensively discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Workflows have beenwidely adopted as a programmingmodel
for scientific applications. Structuring a scientific application as a
workflow provides a convenient level of abstraction for expressing
a scientific problem, shifts the complexity of parallel processing
and its optimization to a workflow management system and
facilitates provenance tracking and reproducibility [1,2].

Workflow programming is a crucial step in the scientific
workflow lifecycle in which the workflow developer composes a
workflow graph, i.e. specifies the workflow activities and their

E-mail address: balis@agh.edu.pl.

dependencies. The second aspect of workflow programming,
which – contrary to graph composition – has not received suf-
ficient attention in the literature, is the programming of work-
flow activities themselves. The majority of existing workflow
development systems are aimed at domain scientists and attempt
to hide the complexity related to low-level programming [1]. Con-
sequently, the prevalent approach in such systems is that the user
is given a predefined ‘palette’ of components which can be com-
posed into a workflow. Adding new components to the palette is
not straightforward, requires using proprietary mechanisms of a
given workflow system, and cannot usually be done by the work-
flow developer (domain scientist).

This approach, typically based on visual programming, is
perfectly valid for domain scientists with limited programming

http://dx.doi.org/10.1016/j.future.2015.08.015
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.08.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.08.015&domain=pdf
mailto:balis@agh.edu.pl
http://dx.doi.org/10.1016/j.future.2015.08.015


148 B. Balis / Future Generation Computer Systems 55 (2016) 147–162

skills and can be particularly effective for systems focusing
on a particular discipline where workflows are relatively small
and many reusable workflow components are already available,
a representative example being the Galaxy workbench [3].
However, in many cases workflow development needs to involve
experienced programmers. For example, workflows can be too
large and complex to be composed by the scientists who instead
interact with specialized science gateways where workflow
instances are automatically generated [4]. A similar case occurs
when workflow components need to be developed from scratch.
In such cases, a workflow programming approach is desired
which provides the programming capabilities similar to those
of a mainstream programming language without forfeiting the
advantages of a formal workflow model.

This paper presents HyperFlow: a model of computation, pro-
gramming approach and enactment engine for complex dis-
tributedworkflows. The novel contribution of HyperFlow concerns
three areas: workflow modeling, programming, and execution.

1. Simple and expressive model of computation. HyperFlow
provides a model of computation for workflows which combines
simplicity with broad expressiveness. The model is inspired
by Process Networks and is based on only three abstractions:
processes, signals, and functions. Despite its simplicity, the model
enables advanced programming capabilities and a rich set of
workflowpatterns that can be expressedwith it, including patterns
for processing of data collections, patterns for parallel processing,
and various data and control flow patterns.

2. Innovative workflow programming approach. In Hyper-
Flow, aworkflow implementation involves a simple declarative de-
scription of the workflow graph, expressed in a JSON syntax, and
implementations of workflow activities as JavaScript/Node.js
functions. This allows workflow developers to preserve all the
advantages of a graph model of parallel computation while lever-
aging benefits of low-level programming in amainstream general-
purpose language and its runtime environment. These benefits
include the simplification of workflow implementations (e.g. by
handling glue code in the low-level implementations of workflow
activities which enables elimination of shim nodes), and gaining
access to a mature programming ecosystem with many develop-
ers, reusable software packages and rich learning resources.

3. Lightweight workflow runtime environment. Finally, Hy-
perFlow provides a workflow enactment engine, implemented as
a lightweightNode.js [5] application. The engine implements the
HyperFlowmodel of computation end enacts theworkflow, but the
actual execution of workflow activities only requires the Node.js
runtime environmentwhichmakes their implementation reusable
outside the HyperFlow context. The workflow execution model of
the HyperFlow engine is inherently distributed and decentralized.
The engine provides a REST API which enables remote workflow
management and delivers the capability to execute workflows in
a fully distributed and decentralized manner where multiple en-
gine instances cooperatively enact aworkflow,without centralized
control.1

This paper is a substantial extension of the previously pub-
lished conference paper [6]. Section 2 overviews related work.
Section 3 extensively describes the HyperFlow workflow model,
programming approach and various programming capabilities, in-
cluding the implementation of representative complex workflow
patterns. Section 4 discusses the model of computation imple-
mented in HyperFlow aswell as its provenancemodel. In Section 5,
the HyperFlow enactment engine is presented. Section 6 studies

1 The HyperFlow engine is available as open-source software at https://github.
com/dice-cyfronet/hyperflow.

example workflows implemented in HyperFlow. Finally, Section 7
concludes the paper.

2. Related work

Two main approaches to workflow programming in existing
workflow systems are the ones based on, respectively, visual or
textual graph composition, and custom-designed dataflow script-
ing languages. In the former approach, the developer composes
the workflow by selecting workflow activities from the available
palette of components, configuring them, and connecting their in-
puts and outputs. The components in the palette can represent par-
ticular domain-specific procedures related to a specific discipline
(life sciences, astronomy, Earth sciences, etc.), but they can also
provide control flow constructs (e.g. loops and conditional state-
ments), data manipulation operations (e.g. string processing, array
operations and data transformations), or other useful high-level
functions (HTTP orWeb Service client, file systemoperations,math
functions, etc.). Many workflow systems follow this general ap-
proach while using different names for the workflow components,
for example activities in ASKALON [7], actors in Kepler [8], services
in Taverna [9], and tools in Triana [10].

Adding new components to the existing palette is usually
possible but it requires using proprietary mechanisms of a
given workflow system. For example, in ASKALON workflows are
composed of abstract activities which are mapped to concrete
executable deployments. Consequently, all activities (even simple
ones such as those handling data conversions) need to be
semantically described and registered in an activity registry. In
Kepler, new actors can be programmed in Java by implementing a
specific interface in order to conform to the general actor lifecycle.
For example, in [11] a set of new actors needed to be implemented
in order to support submission and monitoring of jobs from
Kepler workflows to a cloud infrastructure. In CLAVIRE [12],
software packages need to be described in detail using a domain-
specific language EasyPackage in order to be invokable from a
workflow. In WS-VLAM, workflow activities are implemented as
python modules that need to adhere to a specific interface [13].
Such mechanisms, while attempting to unify the way diverse
software components are invoked from a workflow, ultimately
remain proprietary solutions that the developers are forced to
use, resulting in extra software development effort, decreased
interoperability, and problems related to software maintenance.

In Taverna, workflows are developed by composing compo-
nents (called ‘services’) in a graphical editor. One of the supported
service types is a beanshell service which encapsulates an arbitrary
piece of Java code.Workflow implementations are typically broken
down into two types of services:

• reusable domain services with stable interfaces; in practice
these are implemented as Web services (‘‘Taverna workflows
essentially specify Web service compositions’’ [14]);

• non-reusable shim2 services with ad hoc interfaces that act
as adaptors/connectors between ‘‘domain’’ services and are
implemented on the basis of beanshell services.

Wrapping glue code as explicit nodes in the workflow graph
has a number of disadvantages. Shim nodes introduce noise which
obscures workflow presentation and its provenance trace, because
the user is not interested in trivial transformations in the scientific
pipeline. A solution presented in [15] proposes special annotations
provided by the user or the developer in order to distinguish
interesting and uninteresting workflow activities. Obviously such

2 Shimnode is aworkflow activitywhich does not perform a scientific procedure,
but serves as a connector/glue between other domain-specific workflow activities.

https://github.com/dice-cyfronet/hyperflow
https://github.com/dice-cyfronet/hyperflow
https://github.com/dice-cyfronet/hyperflow
https://github.com/dice-cyfronet/hyperflow
https://github.com/dice-cyfronet/hyperflow


Download	English	Version:

https://daneshyari.com/en/article/425565

Download	Persian	Version:

https://daneshyari.com/article/425565

Daneshyari.com

https://daneshyari.com/en/article/425565
https://daneshyari.com/article/425565
https://daneshyari.com/

