
Future Generation Computer Systems 55 (2016) 200–212

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Automated configuration support for infrastructure migration to the
cloud
Jesús García-Galán a,∗, Pablo Trinidad a, Omer F. Rana b, Antonio Ruiz-Cortés a

a Escuela Técnica Superior de Ingeniería Informática, Avda. Reina Mercedes s/n, 41012, University of Seville, Seville, Spain
b School of Computer Science and Informatics, Cardiff University, Queen’s Buildings, Newport Road, Cardiff CF24 3AA, UK

h i g h l i g h t s

• We support the decision making in migration planning to the cloud.
• We use Feature Models to describe the configuration space of an IaaS.
• We automate the search of the most suitable IaaS configuration.
• Our approach improves the results of commercial applications on Amazon EC2.

a r t i c l e i n f o

Article history:
Received 30 June 2014
Received in revised form
13 January 2015
Accepted 9 March 2015
Available online 19 March 2015

Keywords:
EC2
Automated analysis
Cloud migration
Feature model
IaaS

a b s t r a c t

With an increasing number of cloud computing offerings in the market, migrating an existing
computational infrastructure to the cloud requires comparison of different offers in order to find themost
suitable configuration. Cloud providers offer many configuration options, such as location, purchasing
mode, redundancy, and extra storage. Often, the information about such options is not well organised.
This leads to large and unstructured configuration spaces, and turns the comparison into a tedious, error-
prone search problem for the customers. In this work we focus on supporting customer decision making
for selecting the most suitable cloud configuration—in terms of infrastructural requirements and cost.
We achieve this by means of variability modelling and analysis techniques. Firstly, we structure the
configuration space of an IaaS using feature models, usually employed for the modelling of variability-
intensive systems, and present the case study of the Amazon EC2. Secondly, we assist the configuration
search process. Feature models enable the use of different analysis operations that, among others,
automate the search of optimal configurations. Results of our analysis show how our approach, with a
negligible analysis time, outperforms commercial approaches in terms of expressiveness and accuracy.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The clear benefits of cloud-based infrastructures are increas-
ing the number of companies that are migrating their private and
expensive data centres to the cloud. An Infrastructure as a Service
(IaaS) enables the dynamic provisioning of computational and data
resources (often on-demand), reducing costs (for short termwork-
loads), speeding up the start-up process for many companies, and
decreasing resource and power consumption (among other bene-
fits).

∗ Corresponding author. Tel.: +34 659108324.
E-mail addresses: jegalan@us.es (J. García-Galán), ptrinidad@us.es (P. Trinidad),

ranaof@cardiff.ac.uk (O.F. Rana), aruiz@us.es (A. Ruiz-Cortés).

Deciding themost suitable provider is often challenging, as each
provides a number of possible configurations. As an example of
the dimension of this problem, there are over 100 public cloud
providers [1], and just for Elastic Compute Cloud (EC2) [2], the
Amazon Web Services (AWS) computing service, we have identified
16,991 different configurations.1 As each user/company that plans
to use a cloud computing infrastructure is likely to have their own
specific requirements, it is necessary to identify the most relevant
provider and subsequently themost suitable configuration. Identi-
fying such configuration within a large potential search space is a
tedious and error-prone task that requires for an automated sup-
port.

1 The basis for this number is explained further in this paper.

http://dx.doi.org/10.1016/j.future.2015.03.006
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.006&domain=pdf
mailto:jegalan@us.es
mailto:ptrinidad@us.es
mailto:ranaof@cardiff.ac.uk
mailto:aruiz@us.es
http://dx.doi.org/10.1016/j.future.2015.03.006


J. García-Galán et al. / Future Generation Computer Systems 55 (2016) 200–212 201

In recent times, software tools and research contributions have
emerged to support this decision process, but we have found these
to have limitations, providing either incomplete configuration
spaces or/and imprecise results. On the commercial side, providers
such as Amazon or Rackspace provide tools that suggest specific
configurations for migrating an on-premise infrastructure [3,4].
However, such tools ignore some configuration options, forcing
for example in the case of Amazon to choose Linux as the
only operating system. Other companies, like CloudScreener [5],
provide their own comparators to decide which provider and
configuration best fit user needs. Nonetheless, such tools lack
information about the configuration space they work with, and
some tests have revealed false positives in their optimal results.
Recent academic work [6,7] also suffers from similar concerns,
as they generally only consider a small subset of the available
configurations of services like EC2 or Azure virtual machines. In
order to overcome these limitations, any approachmust ensure for
each provider to model its complete configuration space.

In this work, we assist the customer in determining the most
suitable configuration of an IaaS. For that purpose, we present
the case study of AWS EC2. As outlined previously by us [8],
AWS is one of the most variable and complex providers in terms
of configuration options and pricing. Indeed, understanding EC2
configuration space can be challenging, as it is scattered across
several pages, tables and paragraphs. We believe that modelling
a complex provider eases the task of modelling simpler providers.
Additionally, AWS is one of the most widely used IaaS providers,
being present in all the current configuration tools. For focusing
on one provider, enables us to check their precision and compare
to our approach. Among all the different services AWS offers, we
focus on EC2 and Elastic Block Storage (EBS)—additional disk for
computing instances, which are considered as core infrastructure
services.

We interpret an IaaS as a variability-intensive system, so we can
rely on variability modelling and analysis techniques to support
the configuration process. In particular, we propose the modelling
of IaaS – and EC2 in concrete – as Feature Model (FMs), a kind of
model widely used for variability-intensive systems. In this way,
firstwe represent the configuration space in a complete, structured
and compact manner, and second we provide the user with a
model to ease the configuration process. This modelling enables
the use of the so-named Automated Analysis of Feature Models
(AAFM), a set of analysis operations that extracts information from
the models, which we subsequently use to assist decision-making.
We use some of them to verify the validity and completeness of
the FM with respect to the service configuration space, and to
determine which configuration is the most suitable for any given
requirements. We interpret the most suitable configuration as the
one that meets customer’s requirements and optimises the cost.
Our approach presents two main benefits: first, we consider the
complete configuration space, so that the real optimal solution is
obtained for given customer requirements; second, assisting the
configuration process for such a highly-configurable service like
AWSEC2 enables the same approach to be used for other providers,
such as Azure or Rackspace.

For evaluation purposes, we (i) verify our proposed model,
(ii) compare our approach to existing commercial applications
in term of expressiveness and accuracy, and (iii) check and
improve the performance of our approach. To verify our model,
we describe the EC2 FM using a plain-text language, extract the
list of configurations within our model, and check that it matches
exactly the available configurations of EC2.2 The validation of the

2 We exclude spot instances and micro instances since they are not intended
to be persistent, and EBS optimised instances because we do not consider IOPS
provisioning for EBS.

Fig. 1. Example of a FM.

analysis is performed by means of two different implementations:
FaMa Framework – a well-known tool for the AAFM – and
a reasoner based on the IBM CPLEX solver. We compare the
performance of both approaches, where the latter implementation
shows improved and negligible execution times when calculating
the most suitable configuration. We also compare the obtained
results with the output of CloudScreener, which can be improved
by the use of our approach.

This paper extends our previous work [8] in several ways. In
particular, we provide (i) an explicit description of the config-
uration problem, (ii) a modelling methodology to describe the
configuration space of an IaaS as a FM, (iii) a verification of the
configuration space represented by the FM by means of analysis
operations and (iv) an evaluation of the expressiveness, accuracy
and performance of our approach.

The rest of the paper is structured as follows: Section 2 briefly
describes the state of the art in variability modelling and analysis.
Section 3 states the problem we tackle in this work. Section 4
describes our modelling methodology for the configuration space
of an IaaS, while Section 5 presents a modelling case study with
Amazon EC2. Section 6 presents our analysis approach for the
search of the optimal configuration, and explains the details of
the analysis operations. We present an implementation of our
approach in Section 7, andwe evaluate it in Section 8. Relatedwork
is described in Section 9. Finally, Section 10 discusses our proposal
and proposes future directions in our research.

2. Feature models

Feature Models (FMs) [9] are used to represent all the possible
products that can be built in variability-intensive systems such
as Software Product Lines (SPLs). FMs are tree-like data structures
where each node represents a product feature. Fig. 1 shows a FM
that represents general features of a fictional IaaS provider. Fea-
tures are bound by means of hierarchical (mandatory, optional
and set) and cross-tree relationships. These relationships define
how features can be combined in a product, defining the config-
uration space of the system. In a FM, a feature does not necessar-
ily represent a specific functionality but can be used as abstract
features [10] which represent domain decisions such as Linux
based feature (Fig. 1). IaaS is the root feature that represents the
overall functionality of the system. It has two children, an optional
feature (white circle) named Storage, and a mandatory feature
(black circle) named OS. Both features present set relationships
whose cardinality indicates the number of child features that can
be chosen at the same time.

FMs can also have attributes that represent non-functional
properties, leading to attributed FMs. These attributes are linked



Download English Version:

https://daneshyari.com/en/article/425570

Download Persian Version:

https://daneshyari.com/article/425570

Daneshyari.com

https://daneshyari.com/en/article/425570
https://daneshyari.com/article/425570
https://daneshyari.com

