
Future Generation Computer Systems 55 (2016) 428–443

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Multi-criteria and satisfaction oriented scheduling for hybrid
distributed computing infrastructures
Mircea Moca a,∗, Cristian Litan a, Gheorghe Cosmin Silaghi a, Gilles Fedak b

a Babeş-Bolyai University, Cluj-Napoca, România
b INRIA, Université de Lyon, France

h i g h l i g h t s

• We designed an overall multi-criteria task scheduling method for hybrid DCIs.
• The scheduling method allows a systematic integration of new scheduling criteria into it.
• We defined a methodology for finding optimal scheduling strategies.
• For the validation we consider both user and resource owners perspectives.
• We presented the experimental system built for the validation of the scheduling method.

a r t i c l e i n f o

Article history:
Received 30 April 2014
Received in revised form
24 March 2015
Accepted 27 March 2015
Available online 28 May 2015

Keywords:
Elastic computing infrastructures
Hybrid distributed computing
infrastructures

Pull-based scheduling
Multi-criteria scheduling
Promethee scheduling

a b s t r a c t

Assembling and simultaneously using different types of distributed computing infrastructures (DCI) like
Grids and Clouds is an increasingly common situation. Because infrastructures are characterized by
different attributes such as price, performance, trust, and greenness, the task scheduling problembecomes
more complex and challenging. In this paper we present the design for a fault-tolerant and trust-aware
scheduler, which allows to execute Bag-of-Tasks applications on elastic and hybrid DCI, following user-
defined scheduling strategies. Our approach, named Promethee scheduler, combines a pull-based scheduler
with multi-criteria Promethee decision making algorithm. Because multi-criteria scheduling leads to the
multiplication of the possible scheduling strategies, we propose SOFT, a methodology that allows to find
the optimal scheduling strategies given a set of application requirements. The validation of this method is
performed with a simulator that fully implements the Promethee scheduler and recreates an hybrid DCI
environment including Internet Desktop Grid, Cloud and Best Effort Grid based on real failure traces. A
set of experiments shows that the Promethee scheduler is able to maximize user satisfaction expressed
accordingly to three distinct criteria: price, expected completion time and trust, while maximizing
the infrastructure useful employment from the resources owner point of view. Finally, we present an
optimization which bounds the computation time of the Promethee algorithm, making realistic the
possible integration of the scheduler to a wide range of resource management software.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The requirements of distributed computing applications in
terms of processing and storing capacities are continuously in-
creasing, pushedby the gigantic deluge of large data volume to pro-
cess. Nowadays, scientific communities and industrial companies

∗ Corresponding author.
E-mail addresses: mircea.moca@econ.ubbcluj.ro (M. Moca),

cristian.litan@econ.ubbcluj.ro (C. Litan), gheorghe.silaghi@econ.ubbcluj.ro
(G.C. Silaghi), gilles.fedak@inria.fr (G. Fedak).

can choose among a large variety of distributed computing in-
frastructures (DCI) to execute their applications. Examples of such
infrastructures are Desktop Grids or Volunteer Computing sys-
tems [1] which can gather a huge number of volunteer PCs at al-
most no cost, Grids [2]which assemble large number of distributed
clusters and more recently, clouds [3] which can be accessed
remotely, following a pay-as-you-go pricing model. All these in-
frastructures have very different characteristics in terms of com-
puting capacity, cost, reliability, consumed power efficiency and
more. Hence, combining these infrastructures in such a way that
meets users’ and applications’ requirements raises significant
scheduling challenges.

http://dx.doi.org/10.1016/j.future.2015.03.022
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.022
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.022&domain=pdf
mailto:mircea.moca@econ.ubbcluj.ro
mailto:cristian.litan@econ.ubbcluj.ro
mailto:gheorghe.silaghi@econ.ubbcluj.ro
mailto:gilles.fedak@inria.fr
http://dx.doi.org/10.1016/j.future.2015.03.022


M. Moca et al. / Future Generation Computer Systems 55 (2016) 428–443 429

The first challenge concerns the design of the resource manage-
ment middleware which allows the assemblage of hybrid DCIs.
The difficulty relies in the number of desirable high level features
that the middleware has to provide in order to cope with: (i) dis-
tributed infrastructures that have various usage paradigms (reser-
vation, on-demand, queue), and (ii) computing resources that are
heterogeneous, volatile, unreliable and sometimes not trustee. An
architecture that has been proved to be efficient to gather hybrid
and elastic infrastructures is the joint use of a pull-based scheduler
with pilot jobs [4–7]. The pull-based scheduler, often used in Desk-
top Grid computing systems [8,9], relies on the principle that the
computing resources pull tasks from a centralized scheduler. Pilot
jobs consist in resource acquisition by the scheduler and the de-
ployment on them of agents with direct access to the central pull-
based scheduler. In this way the scheduler can directly work with
the resources, rather than going through local job schedulers. This
approach exhibits several desirable properties, such as scalability,
fault resilience, ease of deployment and ability to cope with elastic
infrastructures, motivating us to use it in our scheduler.

The second challenge is to design task scheduling that are capa-
ble of efficiently using hybrid DCIs, and in particular, that takes into
account the differences between the infrastructures. In particular,
the drawback of a pull-scheduler is that it flattens the hybrid in-
frastructures and tends to consider all computing resources on an
equal basis. Our earlier results [10,11] proved that a multi-criteria
scheduling method based on the Promethee decision model [12]
can make a pull-based scheduler able to implement scheduling
strategies aware of the computing resources characteristics. How-
ever, in this initial work, we tested the method on single infras-
tructure type at a time, without considering hybrid computing
infrastructures, and we evaluated the method against two crite-
ria: expected completion time (ECT) and usage price. In this paper,
we propose the following extensions to the Promethee scheduler:
(i) we add a third criteria called Expected Error Impact (EEI), that
reflects the confidence that a host returns correct results, (ii) we
evaluate the Promethee scheduler on hybrid environments, (iii) we
leverage the tunability of the Promethee scheduler so that appli-
cations developers can empirically configure the scheduler to put
more emphasize on criteria that are important from their own per-
spective.

The third challenge regards the design of a new scheduling
approach that maximizes satisfaction of both users and resource
owners. In general, end users request to run their tasks quicker and
at the cheapest costs, opposed to the infrastructure owners which
need to capitalize their assets and minimize the operational costs.
Thus, an overall scheduling approach should allow the resource
owners to keep their business profitable and meantime, increase
the end user satisfaction after the interaction with the global
computing system.

The Promethee scheduler allows users to provide their own
scheduling strategies in order to meet their applications require-
ments by configuring the relative importance of each criteria. How-
ever such configurable multi-criteria schedulers have two strong
limitations: (i) there is no guaranty that the user preferences ex-
pressed when configuring the scheduler actually translates in an
execution that follows the favored criteria, and (ii) the number of
possible scheduling strategies explodes with the number of crite-
ria and the number of application profiles, rapidly leading to an
intractable situation by the user. We propose Satisfaction Oriented
FilTering (SOFT), a newmethodology that explores all the schedul-
ing strategies provided by a Promethee multi-criteria scheduler to
filter and select the most favorable ones according to the user ex-
ecution profiles and the optimization of the infrastructure usage.
SOFT also allows to select a default scheduling strategy so that the
scheduler attains a high and at the same time stable level of user
satisfaction, regardless the diversity of user satisfaction profiles.

In this paper, we introduce the design of the fault-tolerant
and trust-aware Promethee scheduler, which allows to execute
Bag-of-Tasks applications on elastic and hybrid DCI, following
user-defined scheduling strategies. We thoroughly present the
algorithms of the multi-criteria decision making and the SOFT
methodology. Finally, we extensively evaluate the Promethee
scheduler using a simulator that recreates a combination of
hybrid, elastic and unreliable environment containing Internet
Desktop Grid, public Cloud using Spot Instance and Best Effort
Grid. Simulation results not only show the effectiveness of the
Promethee scheduler but also its ability to meet user application
requirements. We also propose an optimized implementation of
the Promethee algorithms and perform real world experiments to
validate the approach.

The remainder of the paper is organized as follows. In Section 2
we give the background for our work and define the key concepts,
in Section 3 we explain our scheduling approach and define the
performance evaluation metrics. In Section 4 we define SOFT, the
methodology for optimal scheduling strategies selection. Then we
present the architecture of the implemented experimental system
in Section 5. In Section 6 we describe the experimental data, the
setup and present the obtained results and findings. In Section 7
we discuss related work and finally Section 8 gives the concluding
remarks and observations on this work.

2. Background

This section describes the multi-criteria scheduling on hybrid
DCIs problem that we address in this work and defines the key
concepts used in our discussion.

2.1. Description of the scheduling problem

In the considered context users submit their applications for
execution on a system that aggregates the computing resources
from at least three types of DCI: Internet Desktop Grids (IDG),
Best Effort Grids (BEG) and Cloud. Each computing resource from
the above mentioned infrastructures have different characteristics
in terms of computing capacity, reliability, cost, consumed power
efficiency, and trust. For instance, Internet volunteer Desktop PCs
could be considered as free of charge but insecure and unreliable,
while a Cloud resource can be costly but far more secure and
reliable.

Users usually expect good execution performance but they
are also concerned about other issues like cost, confidence and
environmental footprint of the infrastructure. Thus, a relevant
concern for task scheduling is to attain the best usage of the
infrastructures in order tomeet users’ expectations and, at the same
time, insure a convenient capitalization of the resources for their
owners.

2.2. Key concepts

Users submit bag of work-units to a centralized scheduler and
expect (after a while) the corresponding results. For each work-
unit the scheduler creates at least one task and inserts it into a BoT
(Bag of Task). During the execution the scheduler aims at emptying
this BoT by scheduling tasks to hosts belonging to various types of
computing infrastructure.

We use a pull-based scheduling strategy. Hence our scheduler is
a centralized component (master) based on the pull communication
model for the interaction with hosts (workers). The reason for
this design choice is the requirement for elasticity and adaptability
to structure disruptions that characterize DCIs like IDG and
BEG. This model allows a complete independence of all system
components [13]. The pull model allows workers to have the



Download English Version:

https://daneshyari.com/en/article/425589

Download Persian Version:

https://daneshyari.com/article/425589

Daneshyari.com

https://daneshyari.com/en/article/425589
https://daneshyari.com/article/425589
https://daneshyari.com

