
Future Generation Computer Systems 55 (2016) 444–459

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Resource management for bursty streams on multi-tenancy cloud
environments✩

Rafael Tolosana-Calasanz a,∗, José Ángel Bañares a, Congduc Pham b, Omer F. Rana c

a Computer Science and Systems Engineering Department, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
b LIUPPA Laboratory, University of Pau, France
c School of Computer Science & Informatics, Cardiff University, United Kingdom

h i g h l i g h t s

• We provide a system for simultaneous bursty data streams on shared Clouds.
• We enforce QoS based on a profit-based resource management model.
• We provide real experiments within an OpenNebula based data centre.

a r t i c l e i n f o

Article history:
Received 5 May 2014
Received in revised form
9 March 2015
Accepted 11 March 2015
Available online 19 March 2015

Keywords:
Data stream processing
Cloud computing
Profit-based resource management
SLA management
Admission control
QoS provisioning

a b s t r a c t

The number of applications that need to process data continuously over long periods of time has increased
significantly over recent years. The emerging Internet of Things and Smart Cities scenarios also confirm
the requirement for real time, large scale data processing.When data frommultiple sources are processed
over a shareddistributed computing infrastructure, it is necessary to provide someQuality of Service (QoS)
guarantees for each data stream, specified in a Service Level Agreement (SLA). SLAs identify the price that
a user must pay to achieve the required QoS, and the penalty that the provider will pay the user in case
of QoS violation. Assuming maximization of revenue as a Cloud provider’s objective, then it must decide
which streams to accept for storage and analysis; and how many resources to allocate for each stream.
When the real-time requirements demand a rapid reaction, dynamic resource provisioning policies and
mechanisms may not be useful, since the delays and overheads incurred might be too high. Alternatively,
idle resources that were initially allocated for other streams could be re-allocated, avoiding subsequent
penalties. In this paper, we propose a system architecture for supporting QoS for concurrent data streams
to be composed of self-regulating nodes. Each node features an envelope process for regulating and
controlling data access and a resourcemanager to enable resource allocation, and selective SLA violations,
while maximizing revenue. Our resource manager, based on a shared token bucket, enables: (i) the re-
distribution of unused resources amongst data streams; and (ii) a dynamic re-allocation of resources to
streams likely to generate greater profit for the provider. We extend previous work by providing a Petri-
net based model of system components, and we evaluate our approach on an OpenNebula-based Cloud
infrastructure.

© 2015 Elsevier B.V. All rights reserved.

✩ This work was partially supported by the OMNIDATA project funded by
the Aquitaine–Aragon collaboration research program between Aquitaine region
(France) and Aragon region (Spain); and by the Spanish Ministry of Economy under
the program ‘‘Programa de I+D+i Estatal de Investigación, Desarrollo e innovación
Orientada a los Retos de la Sociedad’’, project identifier TIN2013-40809-R.
∗ Corresponding author.

E-mail address: rafaelt@unizar.es (R. Tolosana-Calasanz).

1. Introduction

The number of applications that need to process data contin-
uously over long periods of time has increased significantly over
recent years. Often the raw data captured from the source is con-
verted into complex events—which are subsequently further anal-
ysed. Such applications include weather forecasting and ocean
observation [1], text analysis (especially with the growing require-
ment to analyse social media data, for instance), ‘‘Urgent Comput-
ing’’ [2], and more recently data analysis from electricity meters to

http://dx.doi.org/10.1016/j.future.2015.03.012
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.012&domain=pdf
mailto:rafaelt@unizar.es
http://dx.doi.org/10.1016/j.future.2015.03.012


R. Tolosana-Calasanz et al. / Future Generation Computer Systems 55 (2016) 444–459 445

support ‘‘Smart (Power) Grids’’ [3]. The emerging Internet of Things
and Smart Cities scenarios also strongly confirm that increasing
deployment of sensor network infrastructures generate large vol-
umes of data that are often required to be processed in real-time.
Data streams in such applications can be large-scale, distributed,
and generated continuously at a rate that cannot be estimated in
advance. Scalability remains a major requirement for such appli-
cations, to handle variable event loads efficiently [4].

Multi-tenancy Cloud environments enable such concurrent
data streams (with data becoming available at unpredictable
times) to be processed using a shared, distributed computing in-
frastructure. When multiple applications are executed over the
same shared elastic infrastructure, each stream must be isolated
from the other in order to either: (i) run all instances without
violating their particular Quality of Service (QoS) constraints; or
(ii) indicate that, given current resources, a particular stream in-
stance cannot be accepted for execution. The QoS demand of each
stream is captured in a Service Level Agreement (SLA)—whichmust
be pre-agreed between the stream owner/ generator and the ser-
vice provider (hosting the analysis capability) a priori. Such an SLA
identifies the cost that a user must pay to achieve the required QoS
and a penalty that must be paid to the user if the QoS cannot be
met [5].

Assuming the maximization of profit as the main Cloud
provider’s objective, then it must be decided which streams to ac-
cept for storage and analysis; and how many resources to allocate
to each stream in order to improve its overall profit. This task is
highly challenging with aggregated, unpredictable and bursty data
flows that usually make both predictive and simple reactive ap-
proaches unsuitable. Even dynamic provisioning of resources may
not be useful to provide a profit to the Cloud provider since the
delay incurred might be too high—it may take several seconds to
add new resources (e.g. instantiate new Virtual Machines (VMs)),
and a scaling-up action might generate substantial penalties and
overheads.

Our main contributions consist of data admission and control
policies to regulate data access and manage the impact of data
bursts, and a policy for resource redistribution that tries to min-
imize the cost of QoS penalty violation, maximizing the overall
profit. The rationale behind this latter policy is that current mech-
anisms for scaling resources in Cloud infrastructures have severe
associated delays which may provoke large financial penalties.
Overall, our main contributions can be summarized as follows:
(i) an improved profit model that takes into account both profit
and penalties, (ii) a set of dynamic control actions to manage re-
sources with maximization of a provider’s profit, (iii) a unified
token-based resource management model for realizing the profit-
oriented actions. This model aims at optimizing the utilization of
unused resources, enabling dynamic and consistent re-allocation
of resources, (iv) the specification of all the control logic in terms
of a Reference-net model, (v) extensive simulations of various
scenarios demonstrating the effectiveness of our proposed profit-
oriented control mechanism, and (vi) an OpenNebula-based de-
ployment showing how the Reference-net model can be turned
into an executable model in a straightforward manner.

Our previous contributions in enforcing QoS on shared Cloud
infrastructures were described in [6–8]. In [9,10], we proposed a
profit-based resource management model for streaming applica-
tions over shared Clouds. In [11] we extend this with an improved
revenue generation model and identify specific actions to support
resource management. In particular, with (i) the re-distribution
of unused resources amongst data streams; and (ii) a dynamic
re-allocation of resources to streams likely to generate greater
revenue for the Cloud provider. This paper extends [10,11], by
combining our previous profit-based resourcemanagementmodel
with an OpenNebula-based Cloud deployment. We provide a

model in terms of Reference nets—particular type of Petri nets. One
of the characteristics of Reference nets is that they can also be in-
terpreted and support Java actions in their transitions, so that the
models proposed here become executable directly.

The remaining part of this paper is structured as follows. Sec-
tion 2 presents the revenue-based model for in-transit analysis
and the profit-oriented actions to manage resources with maxi-
mization of provider’s profit. Section 3 describes our system ar-
chitecture based on the token bucket model, the rule-based SLA
management of QoS and the unified token-based resource man-
agement model for realizing the profit-oriented actions by opti-
mizing the utilization of unused resources and allowing dynamic
and consistent re-allocation of resources. Section 4 describes the
Reference net model of the control logic used. Section 5 shows our
evaluation scenarios and simulation results. Section 6 presents our
deployment and experiments on an OpenNebula-based Cloud in-
frastructure. In Section 7, most closely related work is discussed.
Finally, the conclusions and future work are given in Section 8.

2. Profit-based resource management

2.1. Profit-based model

Weconsider a provider centric view of costs incurred to provide
data streamprocessing services over a number of available compu-
tational resources. If we assume the objective of the provider is to
maximize revenue, then it must decide: (i) which user streams to
accept for storage and analysis; (ii) how many resources (includ-
ing storage space and computational capacity) to allocate to each
stream in order to improve overall profit revenue (generally over
a time horizon); and (iii) what actions could be performed to dy-
namically modify and adjust the usage of resources. The first two
considerations can generally be based on the SLA that a user and
a provider have agreed to while the last point could be considered
internal to the provider as a way to optimize resource utilization.

A provider may use a (pre-agreed and reserved) posted price,
a spot price (to gain profit from currently unused capacity), or an
on-demand use (the most costly for the user) of resources, on a
per-unit-time basis—as currently undertaken by Amazon.com in
their EC2 and S3 services. In the case of data stream processing
services, this cost may also be negotiated between the user and
the provider using QoS criteria. How such a price is set is not the
focus of this work, our primary interest is in identifying what are
the performance objectives that can be established in an SLA, and
what actions the provider can perform to guarantee the agreedQoS
and maximize the profit. A key distinction between batch-based
execution on a Cloud infrastructure is that the query/computation
and data are generally available before the execution commences.
In a streamed application, a query is often executed continuously
on dynamically available data. An SLA is therefore essential to
identify what a user must pay the provider, often based on a
previous estimation of resources required/used. Conversely, the
provider can also utilize previously similar stream processing
capability to identify resources required and any penalties paid in
the past (for service degradation that violated the SLA). Due to the
greater potential variation likely to be seen in stream processing
applications, an SLA therefore protects both the user and the
provider.

DefiningQoSproperties in an SLA is very applicationdependent.
In applications such as commercialWeb hosting, QoS levels specify
parameters such as request rate, for example expressed as served
URLs per period or the number of concurrent users served; and
data bandwidth, that specifies the aggregate bandwidth in bytes
per second to be allocated in the contract [12]. In other applications
such as video-on-demand, QoS levels may represent frame rates
and average frame sizes. In the context of a data stream, the



Download English Version:

https://daneshyari.com/en/article/425590

Download Persian Version:

https://daneshyari.com/article/425590

Daneshyari.com

https://daneshyari.com/en/article/425590
https://daneshyari.com/article/425590
https://daneshyari.com

