
Future Generation Computer Systems 52 (2015) 77–85

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Remote data possession checking with enhanced security for cloud
storage✩

Yong Yu a,b,∗, Yafang Zhang a, Jianbing Ni a, Man Ho Au c, Lanxiang Chen d, Hongyu Liu a

a School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
b State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
c Department of Computing, The Hong Kong Polytechnic University, Hong Kong
d School of Mathematics and Computer Science, Fujian Normal University, China

h i g h l i g h t s

• Analyze the security of a remote data possession checking protocol.
• Show the protocol is vulnerable to replay attack and deletion attack.
• Propose an improvement to resist the attacks.
• Prove the security of the improvement.
• Report the performance of the improvement by implementing it.

a r t i c l e i n f o

Article history:
Received 22 June 2014
Received in revised form
26 August 2014
Accepted 1 October 2014
Available online 13 October 2014

Keywords:
Cloud storage
Data integrity
Algebraic signature
Provable security

a b s t r a c t

Cloud storage allows users to enjoy the on-demand and high quality data storage services without the
load of local data maintenance. However, the cloud server providers are not fully trusted. Whether the
data over cloud servers are intact becomes a major concern of data owners. To offer cloud users with the
capacity of data integrity verification, recently, Chen proposed a remote data possession checking (RDPC)
protocol from algebraic signatures which achieves many desirable features such as high efficiency, short
length of challenges and responses, non-block verification. Unfortunately, in this paper, we find that the
protocol is vulnerable to replay attack and deletion attack launched by a dishonest server. Specifically,
the server can deceive the users to believe that their data are well hold by replaying a previous evidence
or re-constructing the deleted data blocks from the corresponding tags in the integrity checking process,
while their data have been partially discarded in fact. Then, we present an improved scheme to fix the
security flaws of the original protocol. Both the theoretical analysis and the implementation results show
that the improvement is secure and practical.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cloud storage provides a novel service model wherein data are
maintained, managed and backed up remotely and accessed by
the users over the network at anytime and from anywhere [1].
Currently, an increasing number of individuals and corporations
outsource their data to the cloud servers to free themselves from
the workload of data storage and management. However, once
the data are uploaded to the cloud, their fate is out of the data
owners’ control. Although a legitimate cloud storage provider will

✩ A preliminary version of this paper was presented at ISPEC 2014.
∗ Corresponding author at: School of Computer Science and Engineering,

University of Electronic Science and Technology of China, Chengdu, China.
E-mail address: yyucd2012@gmail.com (Y. Yu).

take care of the outsourced data, it will do good to itself in case
some accidents happen because the cloud service providers are not
fully trusted [2]. For example, since frequent data access increases
the probability of disk corruption, the loss of data may occur
constantly, but cloud servers may try to hide data loss incidents
in order to maintain their reputation. What is more serious is that
cloud servers might discard the data that have not been or are
rarely accessed for monetary reasons. Indeed, data breaches and
data loss are the two most frequent incidents among the ‘‘9 Worst
Cloud Security Threats’’ listed by InformationWeek.1 Therefore, the
cloud users should have a strong evidence to smooth away the

1 http://www.informationweek.com/cloud/infrastructure-as-a-service/9-worst-
cloud-security-threats/d/d-id/1114085.

http://dx.doi.org/10.1016/j.future.2014.10.006
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.10.006
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.10.006&domain=pdf
mailto:yyucd2012@gmail.com
http://www.informationweek.com/cloud/infrastructure-as-a-service/9-worst-cloud-security-threats/d/d-id/1114085
http://www.informationweek.com/cloud/infrastructure-as-a-service/9-worst-cloud-security-threats/d/d-id/1114085
http://dx.doi.org/10.1016/j.future.2014.10.006


78 Y. Yu et al. / Future Generation Computer Systems 52 (2015) 77–85

worry about the integrity of the data which are being tempered
with and partially discarded.

To check the data integrity over untrusted stores, in 2007, Ate-
niese et al. [3,4] proposed the notion of provable data possession
(PDP) for the first time and presented two efficient and provably-
secure PDP schemes based onhomomorphic verifiable tags. In their
protocols, users are allowed to verify data integritywithout access-
ing the entire file. At the same time, Juels et al. [5] formalized the
model of proof of retrievability (PoR) which enables the server to
produce a concise proof that a user can retrieve data, and then, pre-
sented a sentinel-based PoR schemeusing error-correcting code. In
2008, Shacham and Waters [6,7] described two efficient and com-
pact PoR schemes. In 2009, Ateniese et al. [8] provided a frame-
work for building public-key homomorphic linear authenticators
from any identification protocol and then described how to turn
any public-key homomorphic linear authenticator into a publicly-
verifiable PDP schemewith an unbounded number of verifications.
Subsequently, a number of data auditing protocols [9–18] from
some efficient PDP and PoR schemes [5–7,19–21]were proposed to
ensure that the integrity of users’ data. In particular, a notion of re-
mote data possession checking (RDPC), which is a similar concept
inherited from PDP, proposed by Chen [22] and a basic construc-
tion was presented using an algebraic signature. But in this basic
protocol, the number of verifications is limited. To overcome this
drawback, an improved scheme supporting to refresh tags after t
verifications was also proposed in [22]. Both protocols provide a
number of desirable features such as high efficiency, short length
of challenges and responses, no-block verification and were sug-
gested to be adopted to the cloud storage scenario.
Our contribution. The contributions of this paper can be summa-
rized as follows:
(1) We identify several security flaws in theRDPCprotocols in [22].

First, neither the basic protocol nor the improved one is se-
cure against the replay attack, in which the server is able to
generate a valid proof from the previous proofs, without ac-
cessing the actual data. Consequently, the server needs only to
store a previous proof and replay it as a valid response when
required. Second, the improved protocol is vulnerable to a ma-
licious server’s deletion attack; namely, the server can generate
a valid response in the integrity checking process after deleting
the original data file.

(2) To fix these security problems, we propose a new RDPC pro-
tocol by utilizing some techniques including involving the file
name and the block sequence numbers in generating each tag,
using pseudo-random functions to modify the algebraic signa-
ture algorithm, and the randomsampling trick to provide prob-
abilistic auditing.

(3) Weprove that the fixed protocol is secure based on the security
model due toAteniese et al. [3] andmaintains the desirable fea-
tures of the original protocol on performance. The efficiency of
our enhanced protocol is comparable to that of the state-of-art
and the implementation results show that the improvement is
practical.

Portions of the work presented in this paper have previously
appeared as an extended abstract at [23]. We revised the paper
a lot and added more technical details and experimental results
in this version as compared to [23]. Specially, we added Section 6
to analyze the performance of our new scheme, which is lacking
in [23]. We also provided a complete security proof in Section 5 in
this paper.
Organization: Section 2 gives some preliminaries used in this
paper. Section 3 reviews the RDPC protocols in [22] and discusses
the security of the protocols. Section 4 describes our new RPDC
protocol. Section 5 provides security proofs for the new RDPC
protocol. Section 6 offers performance analysis of our protocol and
Section 7 concludes the paper.

2. Preliminaries

In this section, we review basic knowledge of the RDPC proto-
cols, including security model, components of an RDPC protocol
and its security requirements.

2.1. System model

The remote data possession checking architecture for cloud
storage involves two entities: a cloud server and its users. The
cloud server, which has significant storage space and computation
resources, stores users’ data and provides data access service. The
users have large amount of data to be stored on the cloud in order to
eliminate the overhead of local storage. As users no longer possess
the entire data locally and the cloud server is not fully-trusted, it is
of critical importance for users to ensure their data are correctly
stored and maintained in the cloud. Therefore, the users should
be able to efficiently check the integrity and correctness of their
outsourced data.

2.2. Components of an RDPC protocol

A remote data possession checking protocol, which can be used
to verify the integrity of the users’ data, consists of five phases:
Setup, TagBlock, Challenge, ProofGen and ProofVerify [3,4].

• Setup is a probabilistic algorithm that is run by the user to setup
the protocol. It takes a security parameter κ as input and returns
k as the secret key of the user.
• TagBlock is a probabilistic algorithm that is run by the user to

generate tags for a file. It takes the secret key k and a file F as
input and returns the set of tags T for file F .
• Challenge is a probabilistic algorithm that is run by the user to

generate a challenge. It takes the security parameter κ as input
and returns the challenge chal.
• ProofGen is a deterministic algorithm that is run by the cloud

server in order to generate a proof of possession. It takes the
blocks of file F and the set of tags T as input and returns a proof
of possession R for the challenged blocks in F .
• ProofVerify is a deterministic algorithm that is run by the user

in order to evaluate a proof of possession. It takes his secret key
k, the challenge chal and the proof of possession R as input, and
returns whether the proof is a correct proof of possession for
the blocks challenged by chal.

2.3. Security requirements

In cloud storage, the cloud server is not fully-trusted since it is
self-interested and might hide data corruption incidents to main-
tain its reputation. So a practical RDPC protocol should be secure
against the internal attacks a cloud server can launch, namely re-
place attack, forge attack, replay attack and deletion attack [14].

• Replace attack: the server can replace a challenged and
corrupted pair of data block and tag (Fj, Tj) with another valid
pair of data block and its corresponding tag (Fi, Ti), if Fj or Tj has
been deleted.
• Forge attack: the server enables us to forge a valid tag on some

data block to deceive the users.
• Replay attack: the server is able to generate a valid proof R from

previous proofs, without accessing the stored data.
• Deletion attack: the server may generate a valid proof Rmaking

use of the tags T or other information, even the user’s entire file
has been deleted.



Download English Version:

https://daneshyari.com/en/article/425608

Download Persian Version:

https://daneshyari.com/article/425608

Daneshyari.com

https://daneshyari.com/en/article/425608
https://daneshyari.com/article/425608
https://daneshyari.com

