Future Generation Computer Systems 43-44 (2015) 1-11

Contents lists available at ScienceDirect o - .
FiGICIS]

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs - —

High frequency batch-oriented computations over large sliding time

windows”

@ CrossMark

Leonardo Aniello*, Leonardo Querzoni, Roberto Baldoni

Cyber Intelligence and Information Security Research Center, University of Rome “La Sapienza”, Via Ariosto 25, 00185, Rome, Italy
Department of Computer, Control, and Management Engineering Antonio Ruberti, University of Rome “La Sapienza”, Via Ariosto 25, 00185, Rome, Italy

HIGHLIGHTS

We present a batch-oriented approach for time window computations.

We define a set of strategies for smartly organizing input data.
We implement these strategies on Hadoop/HDFS framework.

We analyze the impact of input data organization on computation performances.

We present experimental evaluations about the effectiveness of this solution.

ARTICLE INFO

ABSTRACT

Article history:

Received 26 April 2013

Received in revised form

10 September 2014

Accepted 19 September 2014
Available online 10 October 2014

Keywords:

Event processing

Batch processing

Time window based computations
Data analytics

Big data

Today’s business workflows are very likely to include batch computations that periodically analyze
subsets of data within specific time ranges to provide strategic information for stakeholders and other
interested parties. The frequency of these batch computations provides an effective measure of data
analytics freshness available to decision makers. Nevertheless, the typical amounts of data to elaborate
in a batch are so large that a computation can take very long. Considering that usually a new batch starts
when the previous one has completed, the frequency of such batches can thus be very low.

In this paper we propose a model for batch processing based on overlapping sliding time windows
that allows to increase the frequency of batches. The model is well suited to scenarios (e.g., financial,
security etc.) characterized by large data volumes, observation windows in the order of hours (or days)
and frequent updates (order of seconds). The model introduces multiple metrics whose aim is reducing
the latency between the end of a computation time window and the availability of results, increasing thus
the frequency of the batches. These metrics specifically take into account the organization of input data to
minimize its impact on such latency. The model is then instantiated on the well-known Hadoop platform,
a batch processing engine based on the MapReduce paradigm, and a set of strategies for efficiently

arranging input data is described and evaluated.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Event processing is a constantly evolving research area
which keeps growing to adapt to emerging technologies and
paradigms [1]. With event processing, events produced by possibly

* This is an extended version of a paper from the same authors appeared at SAC
2013.

* Corresponding author at: Department of Computer, Control, and Management
Engineering Antonio Ruberti, University of Rome “La Sapienza”, Via Ariosto 25,
00185, Rome, Italy. Tel.: +39 3485668071.

E-mail addresses: aniello@dis.uniroma1l.it (L. Aniello),
querzoni@dis.uniromal.it (L. Querzoni), baldoni@dis.uniroma1l.it (R. Baldoni).

http://dx.doi.org/10.1016/j.future.2014.09.008
0167-739X/© 2014 Elsevier B.V. All rights reserved.

different sources are usually collected in batches delimited by time
windows and then elaborated to produce other events as output.
Several real applications require, indeed, to recognize particular
patterns within specific time lapses or to produce periodic reports
on what happened in precise time ranges. A relevant example
for the first case is represented by Intrusion Detection Systems
(IDSs), which keep monitoring network traffic data searching for
known malicious signatures, trace them and raise alerts whenever
too many suspect activities occur within a defined time interval.
Port scan detection techniques based on the activities observed
in specific time windows are investigated in [2] and [3]. In this
scenario, where a large number of network probes can produce
high rate event streams, it is advisable to adopt large time windows
(hours, days) to catch slow attacks; at the same time, it is necessary

http://dx.doi.org/10.1016/j.future.2014.09.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.09.008&domain=pdf
mailto:aniello@dis.uniroma1.it
mailto:querzoni@dis.uniroma1.it
mailto:baldoni@dis.uniroma1.it
http://dx.doi.org/10.1016/j.future.2014.09.008

2 L. Aniello et al. / Future Generation Computer Systems 43-44 (2015) 1-11

to have frequent (every few seconds) analysis results to promptly
react to alarms. An example of the second case is represented by
algorithmic trading, an application scenario where result latency is
critical to profitability. Such scenario is characterized by large data
volumes (millions of trades per day), medium to large observation
windows (hours, days) and frequent (down to a second) updates
to quickly catch highly volatile financial opportunities. We refer to
this kind of event processing as Time Window Based Computations
(TWBCs).

Event processing engines managing TWBCs must cope with
an ever increasing number of event sources and continuously
growing data rates. To keep up with this trend, processing engines
must be able to manage huge input data volumes. Qutput of such
computations is often used to take the best decision about some
next action to be performed. Therefore, it is crucial to get these
results as soon as possible, otherwise they are likely to become
obsolete before they can be actually used. To cope with this
requirement, processing engines must be timely in the production
of their output.

Event processing engines can adopt two possible approaches
for TWBCs with respect to the relationship between when
events arrive and when they are elaborated. If events are
processed as soon as they enter the engine, we talk about
online event processing. Conversely, if events are first stored
and then periodically processed in batches, we talk about batch
event processing. This latter approach is usually preferred when
timeliness requirements are not that strict; an inner characteristic
of batch processing resides, indeed, in the delays to be paid in
order to get updated results, because of its periodical nature.
On the other hand, running computations periodically allows to
cope with load spikes, failures and imbalances much more easily
than the online approach does. Furthermore, a batch approach
enables the decoupling of data loading and data elaboration, which
provides higher flexibility to accommodate for possible distinct
requirements.

Batch processing is heavily employed within business work-
flows of many medium to large companies for periodical ETL (Ex-
tract, Transform, Load) operations where large data sets produced
daily up to hourly have to be moved, analyzed and archived so as
to provide the proper means for enforcing specific business intel-
ligence strategies. These scenarios are representative examples of
the challenges and opportunities that the emerging BigData trend
is fostering. Some well known companies that are employing this
kind of approach are Oracle [4], Dell [5], MicroStrategy [6] and
Cisco [7].

In this paper we focus on the batch approach and investigate
what are its pros and cons in order to assess whether batch-
oriented computation frameworks can properly meet TBWC
requirements. More specifically, we study how to reach the desired
frequency of batch computations in a given application scenario. This
is done through the introduction of a model based on overlapping
sliding time windows. The model points out metrics that, if well-tuned,
can reduce the output latency (i.e., the time between the end of
a computation time window and the availability of computation
results). We also carry out an analysis of the impact of input data
organization on these metrics showing how a smart subdivision of
incoming events in data batches can help in minimizing the output
latency. Finally, an implementation of the model in the well-known
Hadoop framework is proposed. The implementation includes
several input data organization strategies aiming at reducing
output latency.

The rest of the paper is structured as follows: Section 2
discusses the related work, Section 3 introduces batch processing
in TWBCs and our model, discussing the related performance
metrics and two possible strategies for arranging input data;
Section 4 describes the instantiation of the model in the Hadoop
batch processing framework and an ad-hoc strategy for improving
performances; Section 5 discusses the experimental evaluation
results; finally, Section 6 concludes the paper.

2. Related work

The developments in the area of distributed event processing
happened during last decade have been based mostly on the con-
cept of continuous queries, which run unceasingly over streams of
events provided by external sources. These queries are compiled
in a network of processing elements that can be distributed over
available resources. Several projects explored this line, although
the structures used to model the compiled query are named differ-
ently. Among the most cited, we find InfoSphere [8,9] (networks
of InfoPipes), Aurora [10,11] (networks of processing boxes), Tele-
graphCQ [12] (networks of dataflow modules), STREAM [13] (query
plans composed by operators, queues and synopses), Borealis [14]
(networks of query processors), and System S [15] (Event Process-
ing Network (EPN) of Event Processing Agents (EPA)).

In this paper we adopt the jargon introduced by the latter. The
reconfiguration of an EPN at runtime introduces several issues. The
main one is the rebalancing of the load among nodes.

Shah et al. [16] define a dataflow operator called flux, which
is integrated in an EPN and takes care of repartitioning stateful
operators while the processing is running. Its limitations concern
the dependence on configuration parameters that need to be tuned
manually and the lack of fault tolerance mechanisms.

Gu et al. [17] propose a mechanism to process Multiway
Windows Stream Joins (MWS]Js) which distributes tuples to
distinct nodes to allow for parallel processing. Their algorithm
is specific for MWSJs. Xing et al. [18] describe an algorithm
for placing operators such that no replacement is required at
runtime. They deem that operators cannot be moved at all. Xing
et al. [19] introduce a load distribution algorithm for minimizing
latency and avoiding overloading by minimizing load variance and
maximizing load correlation. Liu et al. [20] propose a dynamic
load balancing operator for stateful algorithm, which spills state to
disk or moves the operators to other nodes to resolve imbalances.
Lakshmanan et al. [21] present a stratified approach where the EPN
is horizontally partitioned in strata and operators can be moved
within a single stratum only.

Stateful operators in a continuous query pose the question of
addressing the problem of memory constraints. The most studied
case is the one considering joins over distinct event flows or
data streams, which requires the usage of some time or count
based window in order to avoid maintaining the whole history of
input data. Time windows cannot guarantee a consequent bound
on required memory because of the variability of input event
rate. Employing load shedding as a solution [22-25] could not be
feasible in several scenarios where the accuracy of the processing
is a main requirement, for example decision support, intelligence
or disaster recovery. In this case, the employment of some disk-
based storage is required, as described in several works [26-29]
which however deal with the processing of finite data sets.

There exist some projects addressing the topic of distributed
processing of data stored to secondary storage without employing
continuous queries.

DataCutter [30] is a middleware which breaks down on-
demand clients’ requests into processing filters in charge of
carrying out required computations. It has been devised to carry
out complex processing over large distributed data sets stored to
disk.

The MapReduce paradigm [31] implemented in Google and its
open source implementation Hadoop [32] have received a great
interest by the community and a lot of related projects [33-35]
have been developed adopting a similar approach.

Dryad [36] is a project developed by Microsoft which organizes
the processing as a dataflow graph with computational vertices
and communication channels. The computation is batch and can
elaborate files stored to a distributed file system.

Download English Version:

https://daneshyari.com/en/article/425632

Download Persian Version:

https://daneshyari.com/article/425632

Daneshyari.com

https://daneshyari.com/en/article/425632
https://daneshyari.com/article/425632
https://daneshyari.com

