Future Generation Computer Systems 43-44 (2015) 51-60

Contents lists available at ScienceDirect s -
FiGI I:’.!S

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs =

A self-adaptive scheduling algorithm for reduce start time

e

® CrossMark

Zhuo Tang®*, Lingang Jiang?, Junging Zhou?, Kenli Li?, Keqin Li®"

2 College of Information Science and Engineering, Hunan University, Changsha 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

HIGHLIGHTS

o This paper illustrates the reasons of the system slots waster for reduces tasks waiting around.
e The model can determine the start time of reduce tasks, dynamically according to job context.
e As an optimal scheduling algorithm, SARS can decrease the reduce completion time for jobs.

ARTICLE INFO

ABSTRACT

Article history:

Received 28 December 2013
Received in revised form

1 August 2014

Accepted 15 August 2014
Available online 25 August 2014

Keywords:
Big data
Hadoop
MapReduce
Reduce
Self-adaptive

MapReduce is by far one of the most successful realizations of large-scale data-intensive cloud computing
platforms. When to start the reduce tasks is one of the key problems to advance the MapReduce
performance. The existing implementations may result in a block of reduce tasks. When the output of map
tasks become large, the performance of a MapReduce scheduling algorithm will be influenced seriously.
Through analysis for the current MapReduce scheduling mechanism, this paper illustrates the reasons of
system slot resources waste, which results in the reduce tasks waiting around, and proposes an optimal
reduce scheduling policy called SARS (Self Adaptive Reduce Scheduling) for reduce tasks’ start times in
the Hadoop platform. It can decide the start time point of each reduce task dynamically according to
each job context, including the task completion time and the size of map output. Through estimating job
completion time, reduce completion time, and system average response time, the experimental results
illustrate that, when comparing with other algorithms, the reduce completion time is decreased sharply.
It is also proved that the average response time is decreased by 11% to 29%, when the SARS algorithm is

Task scheduling

applied to the traditional job scheduling algorithms FIFO, FairScheduler, and CapacityScheduler.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

MapReduce is an excellent model for distributed computing,
introduced by Google in 2004 [1]. It has emerged as an impor-
tant and widely used programming model for distributed and
parallel computing, due to its ease of use, generality, and scalabil-
ity. Among its open source implementation versions, Hadoop has
been widely used in industry around the whole world [2] and has
been used/extended by scientists as the base of their own research
work [3]. It has been applied to the production environments, such
as Google, Yahoo, Amazon, Facebook, and so on. Because of the
short development time, Hadoop can be improved in many aspects,
such as intermediate data management and reduce tasks schedul-
ing [4]. This paper mainly focuses on the reduce scheduling prob-
lem, which refers to the starting times of the reduce tasks.

* Corresponding author. Tel.: +86 18627568501.
E-mail address: ztang@hnu.edu.cn (Z. Tang).

http://dx.doi.org/10.1016/j.future.2014.08.011
0167-739X/© 2014 Elsevier B.V. All rights reserved.

Map and Reduce are the two sections in a MapReduce schedul-
ing algorithm. In Hadoop, each task contains three functioning
phases: copy, sort, and reduce [5]. The goal of the copy phase is
to read the map tasks’ outputs. The sort phase is to sort the inter-
mediate data which are produced by map tasks and will be the in-
put to the reduce phase. Finally, the eventual results are produced
through the reduce phase, where the copy and sort phases are to
preprocess the input data of reduce. In real applications, copying
and sorting may consume considerable amount of time, especially
in the copy phase. In the theoretical model, the reduce functions
start only if all map tasks are finished [6]. However, in the Hadoop
implementation, all copy actions of reduce tasks will start when
the first map action is finished [7]. But in a slot duration, if there is
any map task still running, the copy actions will wait around. This
will lead to the waste of the reduce slot resources.

The existing MapReduce program frameworks often treat the
jobs as awhole process. However, the differences between the map
and reduce tasks are not considered. Since map and reduce task
execution times are not related, it is not accurate to compute the

http://dx.doi.org/10.1016/j.future.2014.08.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.08.011&domain=pdf
mailto:ztang@hnu.edu.cn
http://dx.doi.org/10.1016/j.future.2014.08.011

52 Z. Tang et al. / Future Generation Computer Systems 43-44 (2015) 51-60

average task execution time by taking map and reduce tasks to-
gether. The dynamic proportional scheduler [8] provides more job
sharing and prioritization capability in scheduling and also results
in increasing share of cluster resources and more differentiation
in service levels of different jobs. Zaharia et al. proposed the delay
scheduling algorithm [9] to address the conflict between data lo-
cality and fairness. Time estimation and optimization for Hadoop
jobs have been explored in [10,11]. In [10], the authors focused on
minimizing the total completion time of a set of MapReduce jobs.
In [11], the authors estimated the progress of queries that run as
MapReduce DAGs.

The need for a scheduling algorithm arises from the require-
ment for most modern systems to perform multitasking (execute
more than one process at a time) and multiplexing (transmit multi-
ple flows simultaneously) [12]. In traditional MapReduce schedul-
ing, the reduce task should begin when all the map tasks are
completed. In this way, the outputs of map tasks should be read
and written to the reduce tasks in the copy process [13]. However,
through the analysis of the slot resource usage in the reduce pro-
cess, this paper illustrates that data transfer will result in slot idle
and delay. On the other hand, various types of information and
data processed in the large-scale dynamic grid environment may
be incomplete, imprecise, fragmentary and overloading [14]. So as
Hadoop platform in cloud computing, when the map tasks’ out-
puts become large, the performance of a MapReduce scheduling
algorithm will be influenced seriously [15]. Especially, when mul-
tiple tasks are running simultaneously, inappropriate scheduling
of reduce tasks will lead to untimely scheduling of other jobs in
the system, and these are all the stumbling blocks of the Hadoop
popularization.

Through studying reduce task scheduling in the Hadoop plat-
form, this paper proposes an optimal reduce scheduling policy
called SARS (Self Adaptive Reduce Scheduling). SARS can reduce
the waiting around of copy actions and advance the performance
of a whole system. Through analyzing the details of a map and re-
duce two-phase scheduling process at runtime, the SARS algorithm
can determine the start time point of each reduce task dynamically
according to each job’s context, such as the task completion time
or the size of map output. This paper makes the following contri-
butions to MapReduce performance enhancement:

(1) The analysis for the current MapReduce scheduling mecha-
nism, and illustration of the reasons of system slot resources
wasting, which results in the reduce tasks waiting around;

(2) The development of a model details the start times of the
reduce tasks dynamically according to each job context,
including the task completion time and the size of map output;

(3) An optimal reduce scheduling algorithm which decreases the
reduce completion time and the system average response time
in the Hadoop platform.

The rest of this paper is organized as follows. Section 2 reviews
the related works. Section 3 analyzes the problem of the long wait-
ing of reduce tasks. Section 4 proposes an optimal reduce schedul-
ing algorithm for reduce tasks’ start times in the Hadoop platform.
Experiments and analysis which support our contributions are pre-
sented in Section 5. Section 6 concludes this paper and describes
the future work.

2. Related work

There have been a number of proposals for task scheduling in
distributed systems, which use various mathematical techniques
to achieve the MapReduce scheduling process. At present, the
researches on MapReduce scheduling algorithms focus on the
optimization of the job computation time, cluster workloads, and
data communication.

Balanced-pools efficiently utilize performance properties of
MapReduce jobs in a given workload for constructing an opti-
mized job schedule [16]. For the default method of Hadoop, which
cannot schedule the tasks to the nodes with the prefetched data,
a prefetching technique was proposed in [17] to hide the re-
mote data access delay caused by the map tasks processed on the
nodes without the input data. We proposed MTSD, an extensional
MapReduce task scheduling algorithm for deadline constraints in
the Hadoop platform [18], which allows a user to specify a job’s
deadline and tries to make the job to be finished before the dead-
line. Some of these proposals [19] presented the workload char-
acteristic oriented scheduler, which strives for co-locating tasks of
possibly different MapReduce jobs with complementing resource
usage characteristics. In [20], the authors presented a scheduling
technique for multi-job MapReduce workloads that is able to dy-
namically build performance models of the executing workloads,
and then use these models for scheduling purposes. As the MapRe-
duce distributed computations were analyzed as a divisible load
scheduling problem [21], several classes of algorithms were pro-
posed and examined for scheduling divisible loads on a hetero-
geneous system with memory limits [22]. Some task scheduling
algorithms are to release the data communication among remote
slots, e.g., the center-of-gravity reduce scheduler is a locality-
aware and skew-aware reduce task scheduler for saving MapRe-
duce network traffic [23], and MaRCO employs eager reduce to
process partial data from some map tasks while overlapping with
other map tasks’ communication [6].

Furthermore, there are also many researches using MapReduce
to resolve the big data process [24]. A MapReduce-based frame-
work for HPC analytics was developed in [25] to eliminate the
multiple scans and also reduce the number of data preprocessing
MapReduce programs. Considering the dynamic resource alloca-
tion for the IaaS cloud systems, the algorithms in [26] can adjust
the resource allocation dynamically based on the updated informa-
tion of the actual task executions. In these data processes, the util-
ity becomes a considerable problem naturally. The authors of [10]
discussed how to increase the utilization of MapReduce clusters to
minimize their cost. They optimized the execution of MapReduce
jobs on the cluster through the design of a job schedule that min-
imizes the completion time (makespan) of such a set of MapRe-
duce jobs. To achieve the optimal user utility, the goal of resource
provisioning in [27] is to minimize the cost of virtual machines for
executing MapReduce applications. For the practical applications,
some aspects of reality should be taken into account, such as fault
tolerance [28] and energy efficiency [29,30].

In this article, it is not possible to discuss every related scheme.
Hence, we only outline a few closely related papers as above. The
main focus of most current works about MapReduce scheduling
algorithms appears to be job scheduling, less involving task delay,
especially the consideration of the tasks with the same key for the
input data block. Through analysis of the intermediate data process
in Hadoop, this paper indicates that the scheduling of reduce tasks
is one of the key problems which affect the performance of a
system.

3. Problem analysis

Hadoop allows the user to configure the job, submit it, control
its execution, and query the state. Every job consists of indepen-
dent tasks, and each task needs to have a system slot to run. Fig. 1
shows the time delay and slot resources waste problem in reduce
scheduling. Y-axis in Fig. 1 means the resource slots, which is rep-
resented by Map slots and Reduce slots. At first in Fig. 1(a), we can
know that Job; and Job, are the current running jobs, before the
time t,, each job is allocated two map slots to run respective tasks.
Because the reduce tasks will begin once any map task finishes,

Download English Version:

https://daneshyari.com/en/article/425637

Download Persian Version:

https://daneshyari.com/article/425637

Daneshyari.com

https://daneshyari.com/en/article/425637
https://daneshyari.com/article/425637
https://daneshyari.com

