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h i g h l i g h t s

• We designed an approach to measure the synchronization strength of non-stationary nonlinear data against phase differences.
• We demonstrated that the synchronization analysis was an effective indicator of an epileptic focus location.
• Wedeveloped a parallelized approachwith general-purpose computing on the graphics processing unit (GPGPU), and it largely improved the scalability

of data processing.
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a b s t r a c t

Synchronization measurement of non-stationary nonlinear data is an ongoing problem in the study
of complex systems, e.g., neuroscience. Existing methods are largely based on Fourier transform and
wavelet transform, and there is a lack of methods capable of (1) measuring the synchronization strength
of multivariate data by adapting to non-stationary, non-linear dynamics, and (2) meeting the needs
of sophisticated scientific or engineering applications. This study proposes an approach that measures
the synchronization strength of bivariate non-stationary nonlinear data against phase differences. The
approach (briefed as AD-PDSA) relies on adaptive algorithms for data decomposition. A parallelized
approach was also developed with general-purpose computing on the graphics processing unit (GPGPU),
which largely improved the scalability of data processing, namely, GAD-PDSA. We developed a model on
the basis of GAD-PDSA to verify its effectiveness in analyzingmulti-channel, event-related potential (ERP)
recordings against Daubechies (DB)waveletwith reference to theMorletwavelet transform (MWT). GAD-
PDSA was applied to an EEG dataset obtained from epilepsy patients, and the synchronization analysis
manifested an effective indicator of epileptic focus localization.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Synchronization measurement plays an important role in the
study of the interacting dynamics of complex systems [1]. The
recordings of the activities of such systems are generally non-
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stationary and non-linear. Typical examples include electroen-
cephalogram (EEG) and magnetoencephalogram (MEG), which
normally consist of simultaneous recordings of tens to hundreds
of data channels. Synchronization measurements of such non-
stationary, non-linear data remain a challenging issue.

A number ofmethods have been developed tomeasure the syn-
chronization of a bivariate signal, e.g., a cross-correlation function,
advanced in the 1950s; the use of linear synchronization [2] to ana-
lyze time delay and synchronization; the coherence [3] quantities
of the synchronization of a bivariate signal in the frequency do-
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main; phase synchronization, including the phase lock, the Hilbert
transform, and the wavelet transform, and the phase synchroniza-
tion references [4,5].

Since the synchronization occurring at different frequencies be-
tween two or more signals indicates the interacting dynamics of a
complex system [6], signals need to be decomposed into several
components consisting of basic functions to obtain the frequen-
cies in order to estimate the synchronization. Fourier analysis has
been widely used in the decomposition of interesting signals [7–9]
and provides accurate estimates of their spectra with the assump-
tion that these signals are stationary. However, Fourier analy-
sis is not well-suited for non-stationary data since the spectra of
non-stationary data change with time. Fortunately, wavelet-based
methods have been proposed as powerful alternatives to Fourier-
basedmethods for the synchronization estimates of non-stationary
signals. Time-course synchronization, based on wavelet, enables
the extraction of the temporal variation in the synchronization
among non-stationary signals and is thus a better candidate for the
measurement of non-stationary dynamic signal interaction.

However, wavelet-based synchronization methods generally
suffer from a lack of energy–time–frequency correlation due to the
limited length of the basic wavelet function. This inherent problem
inevitably misleads the calculation of time-course synchroniza-
tion. Furthermore, the selection of the center frequency of wavelet
transform relies on a priori knowledge of the frequency character-
istics of the target components. A blind full spectrum scan (if at
all possible) will only result in very difficult interpretations [10].
Moreover, some wavelet transforms aided by Fourier transform,
taking the most commonly used Morlet wavelet as an example,
cannot make a physically meaningful interpretation of the non-
linear signal because of the spurious harmonic components that
cause energy spreading induced by the linear Fourier transform.
Apparently, the wavelet analysis is not adaptive in nature [11].
There is a pressing need for an approach that adapts to the dynam-
ics of non-stationary non-linear data.

We consider that the key to solving this problem lies with the
decomposition of the data. The premise to achieve adaptability, in
contrast to using these linear methods, is the viability of automati-
cally exploring the structure of non-stationary, non-linear data and
generating the necessary adaptive bases from the data. Ensemble
empirical mode decomposition (EEMD) and local mean decompo-
sition (LMD) are twoprevalentmethods in this direction. EEMDcan
break down complicated datawithout a basic function into a series
of embedded oscillatory intrinsic mode functions (IMFs), which is
particularly suited to noisy data. Similarly, LMD decomposes am-
plitude and frequencymodulated signals into a small set of product
functions (PFs), each of which is the product of an envelope signal
and a frequency modulated signal from which a time-varying in-
stantaneous phase and instantaneous frequency can be derived. In
this study, we propose an adaptive decomposition based phase dif-
ference synchronization analysis (AD-PDSA) method.

The decomposed components with EEMD or LMD are further
processed via the Hilbert transform [12] to obtain the instanta-
neous phase of each component. The synchronization strength of
bivariate data series, i.e., two IMFs/PFs of the same original data
segment or two different ones, is measured by the statistical anal-
ysis of the ratio between the phase differences of each series at
the same time point based on Cauchy–Schwarz inequality [13].
The value of the strength ranges from 0 to 1, where 0 denotes no
synchrony and 1 denotes perfect synchrony. The synchronization
measurement can eventually be extended to quantify the global
synchronization of multiple components from the same data seg-
ment or multivariate data.

Another challenge is to bridge the gap between the proposed
method and sophisticated scientific or engineering applications.
Both EEMD and LMD algorithms must repetitively process itera-
tive computations. The precision of outputs heavily depends on the

number of iterations, which should be large enough to eliminate
the iterative error. The number of simultaneously recorded neu-
rons has approximately doubled every seven years over the last
five decades [14]. Analysis of neural data in tens or hundreds of
channels has become common within the neuroscience commu-
nity. Due to the rapidly growing scales and sizes of neural data and
the high complexity of decomposition algorithms, how to ensure
the scalability of the proposedmethod is an important issue. Mod-
ern cyber infrastructures have played an important role in solving
compute-intensive [15–18] and data-intensive scientific problems
[19–22]. In this study, this goalwas achieved by gearing contempo-
rary computing technologies rather than altering the fundamental
theory of data decomposition.

A parallelized method of successfully adapting the technol-
ogy of general-purpose computation on graphics processing units
(GPGPU) was developed to significantly enhance the scalability
of the original sequential version. The GPGPU-enabled AD-PDSA
(GAD-PDSA) explores the very fine-grained parallelism of LMD
with original parallel algorithms. It can operate on neural data
streamswith a large (up to one thousand) number of channels. The
scalability of the approach adapts well to the advances in record-
ing technologies of neural activities. Compared to the AD-PDSA,
the execution time of the new approach is a polynomial function
of the data size while that for conventional CPU-based platforms
conforms to an exponential function. This will result insignificant
differences when handling very large data. We developed a model
on the basis of GAD-PDSA to verify its effectiveness in ana-
lyzing multi-channel, event-related potential (ERP) recordings
against Daubechies (DB) wavelet with the Morlet wavelet trans-
form (MWT) reference. AD-PDSAwas then applied to experimental
datasets to analyze the potential synchronization of EEG data ob-
tained from epilepsy patients. Epilepsy is defined as spontaneous
clinical seizures caused by paroxysmal, abnormally synchronous
neuronal activity. The electrical symptoms of this abnormal activ-
ity are believed to uniquely define and reveal themechanisms of an
underlying abnormal neural function and structure. The localiza-
tion of the initial seizure discharge is an attempt to find the region
that generates the abnormal neural activity. Therefore, the analy-
sis of ictal EEG (scalp or intracranial) is an effective standard for
the identification of the epileptic focus localization. The results in-
dicated that (1) the newmethod is adaptively suitable for the syn-
chronization analysis of non-stationary and non-linear series, (2) it
can detect a reliable global phase correlation amongst series com-
ponents. GAD-PDSA has also improved scalability compared to the
original serial AD-PDSA method.

The remainder of this paper is organized as follows. In Sec-
tion 2, we propose a newmethod, AD-PDSA, which is based on the
PDSA and EEMD or LMD. Section 3 details the design of the GPGPU-
enabled AD-PDSA. Experiments and results are presented in Sec-
tion 4. We conclude the paper with a summary in Section 5.

2. Methods

This section first introduces the algorithm of the phase
difference synchronization analysis (PDSA) and the adaptive
decomposition-based PDSA (AD-PDSA). Following this, an ex-
tended AD-PDSA for global analysis is introduced. Then, the GPGPU
is briefly described, and the levels of the AD-PDSA as well as the
parallelization of the AD-PDSA are discussed in the next part.

2.1. Adaptive decomposition-based phase difference synchronization
analysis (AD-PDSA)

Let X = (x1, x2, . . . , xT ), Y = (y1, y2, . . . , yT ) denote the
bivariate data (e.g., activities of two brain regions), T is the number
of data channels. The flow of the PDSA is presented in Fig. 1.
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