Future Generation Computer Systems 42 (2015) 44-54

Contents lists available at ScienceDirect & =
FIGICIS
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs . e

Elastic grid resource provisioning with WoBinGO: A parallel
framework for genetic algorithm based optimization

g

@ CrossMark

Milos Ivanovic®*, Visnja Simic?, Boban Stojanovic?, Ana Kaplarevic-Malisic?,

Branko Marovic®

@ Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia
b School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia

HIGHLIGHTS

Automatic adaptive allocation of jobs with limited lifetime.

Framework for optimization using parallel GA over Grid and HPC resources.
Provides elastic resource provisioning avoiding unnecessary occupation of resources.

Limited job lifetime provides friendliness towards other batching queue users.

The complexity of underlying Grid infrastructure is hidden from the user.

ARTICLE INFO

Article history:

Received 9 December 2013
Received in revised form

20 March 2014

Accepted 2 September 2014
Available online 16 September 2014

Keywords:

Grid computing

Pilot-job infrastructure

Dynamic resource provisioning
Metaheuristics based optimization

ABSTRACT

In this paper, we present the WoBinGO (Work Binder Genetic algorithm based Optimization) framework
for solving optimization problems over a Grid. It overcomes the shortcomings of earlier static pilot-job
frameworks, by: (1) providing elastic resource provisioning thus avoiding unnecessary occupation of Grid
resources; (2) providing friendliness towards other batching queue users thanks to adaptive allocation
of jobs with limited lifetime. It hides the complexity of the underlying Grid environment, allowing the
users to concentrate on the optimization problems. Theoretical analysis of possible speed-up is presented.
An empirical study using an artificial problem, as well as a real-world calibration problem of a leakage
model at the Visegrad power plant were performed. The obtained results show that despite WoBinGO’s
adaptive and frugal allocation of computing resources, it provides significant speed-up when dealing with
problems that have computationally expensive evaluations. Moreover, the benchmarks were performed
in order to estimate the influence of the limited job lifetime feature on the queuing time of other batching

framework

jobs, compared to a static pilot-job infrastructure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing [1] has emerged as an effective environment for
the execution of parallel applications that require great computing
power. Grid computing consists of a geographically distributed
infrastructure gathering computer resources around the world
in a transparent way. Users are provided access to enormous
computing resources, and enabled to better meet the challenges of
science and engineering. One of the most frequently encountered

* Corresponding author. Tel.: +381 34 336223; fax: +381 34 335040.
E-mail addresses: mivanovic@kg.ac.rs (M. Ivanovic), visnja@kg.ac.rs (V. Simic),
bobi@kg.ac.rs (B. Stojanovic), ana@kg.ac.rs (A. Kaplarevic-Malisic),
branko.marovic@rcub.bg.ac.rs (B. Marovic).

http://dx.doi.org/10.1016/j.future.2014.09.004
0167-739X/© 2014 Elsevier B.V. All rights reserved.

challenges in applied science and engineering, is optimization.
Genetic algorithms (GAs) [2] have proven themselves as robust
and powerful mechanisms when it comes to solving complex
real-world optimization problems. GA is characterized by a large
number of function evaluations. Due to the time-consuming fitness
evaluation functions found in real-world problems, it may take
days and months for the GA to find an acceptable solution.
Speeding up the optimization process is achieved by parallelization
of GA [3-5] which reduces the resolution times to reasonable
levels. Grid computing environments provide the infrastructure
for implementing parallel metaheuristics. There, researchers face
new difficulties associated with developing and deploying a Grid
based application. The fact that Grid resources are distributed,
heterogeneous and non-dedicated, makes writing parallel Grid-
aware applications very challenging [6]. The development and

http://dx.doi.org/10.1016/j.future.2014.09.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.09.004&domain=pdf
mailto:mivanovic@kg.ac.rs
mailto:visnja@kg.ac.rs
mailto:bobi@kg.ac.rs
mailto:ana@kg.ac.rs
mailto:branko.marovic@rcub.bg.ac.rs
http://dx.doi.org/10.1016/j.future.2014.09.004

M. Ivanovic et al. / Future Generation Computer Systems 42 (2015) 44-54 45

execution of Grid applications require considerable effort and
expert knowledge. Understanding the basics of Grid computing
and Grid middlewares is a time and energy consuming process
for developers. Moreover, for each run of application on the
Grid, one has to address the issues of Grid resource discovery
and selection, Grid job preparation, submission, monitoring and
termination which differ from one middleware to another. These
differences among middlewares may limit or hinder portability
between different Grid infrastructures. Aside from the complexity
of the Grid infrastructures, certain limitations are also present,
notably the need for users to wait, sometimes for a significant
time until their requests for computing resources are processed
and the lack of good support for interactive applications. The
complexity involved in writing Grid-enabled applications averts
researchers from harnessing computational Grids by scientific
applications. As Grids grow in size at an admirable rate and an
increasing number of resources are put at Grid users’ disposal, it
is of utmost importance for the researchers to efficiently exploit
computational Grids in order to solve real-world problems. In this
context, tools for simplifying Grid application development, by
hiding the complexity of Grid computing from the researchers,
can significantly enhance Grids harnessing by scientific and
engineering applications.

In this paper, we present the WoBinGO framework for solving
optimization problems over heterogeneous resources, including
HPC clusters and Globus-based Grids. Although it is possible
to utilize diverse computing resources for solving optimization
problems in parallel (multiple university clusters, Grid), having in
mind the immense computing power offered by the Grid, we will
restrict our discussion in this paper only to EGI (European Grid
Initiative) deployment of WoBinGO. The framework was designed
to meet the following goals: (1) speeding up the optimization
process by parallelization of GA over the Grid; (2) relieving the
researcher burden of obtaining Grid resources and dealing with
various Grid middlewares; (3) enabling fast allocation of Grid
jobs to avoid waiting until requests for computing resources are
processed by Grid middleware; (4) providing flexible allocation of
worker jobs in accordance with the dynamics of the users’ requests,
thus avoiding the unnecessary reservation of computing resources.

The framework is dedicated for parallel execution of single
and multi-objective optimization using GA on the Grid. It uses
a master-slave parallelization model and allows both: parallel
evaluation of a population in GA and parallel execution of
multiple instances of the parallel GA. As a novelty, this framework
incorporates the Work Binder (WB) [7] which provides almost
instant access to Grid resources and interactivity for client
applications. Integration of WB into the framework enables
the programmer to focus solely on the optimization problem
without having to worry about specific details of Grid computing.
Additionally, WB increases the utilization of the Grid infrastructure
by offering automated elasticity in its occupancy, based on
present and recent client behaviour. Furthermore, a single WB
service is capable of serving multiple users with multiple GA
instances, where for each instance of GA a population evaluation
is also parallelized. Due to the multi-tier design, it is easily
possible to replace master-slave parallelization model with
hierarchical parallel GA with master-slave demes [8] or with
PEGA (parallel cellular GA) [9], keeping all the other components
intact. The framework also adheres to the standard Globus security
mechanisms, including GSI and MyProxy.

With the master-slave parallelization model and WB, evalua-
tion of individuals is separated from the rest of the algorithm and
performed on Grid computing elements (CEs). This allows an ob-
jective function to be written in any compiled or script language,
which makes our framework favourable for solving optimization

problems in diverse areas of science and engineering. The frame-
work has been developed as an effort to efficiently solve optimiza-
tion problems from the field of hydrology, but can be used for any
other optimization task suitable for GA treatment.

Benchmarks were carried out using EMI/UMD middleware [10]
on the South-East European regional infrastructure in order to
evaluate the usability and efficiency of the proposed framework.
The obtained results show that the achieved speed-up is almost
linear. Moreover, the benchmarks were performed in order to
estimate the influence of the limited job lifetime feature on the
queuing time of other batching jobs. Compared to a static pilot-job
infrastructure, this waiting time was significantly reduced. Further
details about pan-European Grid, aspects such as production
infrastructure, the management tools and the operational services
offered can be found in [11]. The process of building regional Grid
infrastructure is thoroughly described in [12].

The rest of the paper is organized as follows: in Section 2, we
review the related work. A description of the framework is given
in Section 3. In Section 4, theoretical analysis of WoBinGO'’s speed-
up along with the experimental results and discussion are given.
A case study is presented in Section 5, followed by concluding
remarks in the last section.

2. Related work

Grid oriented genetic algorithms (GOGAs, following the nota-
tion first introduced by [13]) have been used over the past years for
solving different problems [14-16]. The research community has
also proposed and implemented optimization frameworks with
parallel metaheuristics included. Most of them have been using
small, dedicated and homogeneous computing resources. Here, we
will only discuss those that enable execution of parallel meta-
heuristics in Grid computing environments.

GridUFO is a service oriented optimization framework [17] that
offers sharing of optimization algorithms and problems among
GridUFO users and solving of optimization problems using an
algorithm already registered with the framework. New algorithms
and objective functions can be registered with the framework, but
only C language code is acceptable. This is a huge limitation since
the hydrocodes of our main interest are written in C#/.NET and
Fortran. The authors report significant speed-up for the problems
of a larger size, but they do not consider the time spent for
scheduling the Grid job.

ParadisEO-CMW [18] is the framework for designing and
deploying parallel metaheuristics on computational Grids, assem-
bling together the ParadisEO [19] and MW [20] frameworks. Grid-
enabling an application with MW involves the reimplementation
of a number of virtual functions. The framework is only intended
for Grids consisting of multiple Condor pools combined via flock-
ing.

JG?A [21] was created as an extension of JGA [22] to take
advantage of Grid technologies, allowing population evaluation
parallelization and parallelization of the GA parameter tuning
experiments. JG?A uses GT4 Grid middleware, but requires Condor
as an underlying scheduler. This makes it inflexible because, in
general, local resource managers other than Condor are used
at different computing sites and these sites may be under a
different administrative control, which makes it hard to enforce the
deployment of Condor on all these sites.

Efficient hierarchical parallel GA framework using Grid com-
puting (GE-HPGA) [23] hides the complexity of a Grid environ-
ment through the extended GridRPC API and a metascheduler for
automatic resource discovery. It has a two level structure: at the
first level, sub-populations are transferred onto remote computing
clusters and subpopulation evolution is invocated using the Globus

Download English Version:

https://daneshyari.com/en/article/425652

Download Persian Version:

https://daneshyari.com/article/425652

Daneshyari.com

https://daneshyari.com/en/article/425652
https://daneshyari.com/article/425652
https://daneshyari.com

