
Future Generation Computer Systems 27 (2011) 991–998

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improving job scheduling algorithms in a grid environment
Yun-Han Lee, Seiven Leu, Ruay-Shiung Chang ∗

Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien, Taiwan, ROC

a r t i c l e i n f o

Article history:
Received 31 October 2010
Received in revised form
8 May 2011
Accepted 28 May 2011
Available online 12 June 2011

Keywords:
Grid computing
Job scheduling

a b s t r a c t

Due to the advances in human civilization, problems in science and engineering are becoming more
complicated than ever before. To solve these complicated problems, grid computing becomes a popular
tool. A grid environment collects, integrates, and uses heterogeneous or homogeneous resources scattered
around the globe by ahigh-speednetwork. A grid environment canbe classified into two types: computing
grids and data grids. This paper mainly focuses on computing grids.

In computing grid, job scheduling is a very important task. A good scheduling algorithm can assign
jobs to resources efficiently and can balance the system load.

In this paper, we propose a hierarchical framework and a job scheduling algorithm called Hierarchical
Load Balanced Algorithm (HLBA) for Grid environment. In our algorithm, we use the system load
as a parameter in determining a balance threshold. And the scheduler adapts the balance threshold
dynamically when the system load changes. The main contributions of this paper are twofold. First, the
scheduling algorithm balances the system load with an adaptive threshold and second, it minimizes the
makespan of jobs. Experimental results show that the performance of HLBA is better than those of other
algorithms.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Due to the progress of science and engineering, problems in
these related fields become more complicated than ever before. In
order to solve the problems, we need more powerful computing
facility. Utilizing and combining the computer resources scattered
around in a company or a campus is a good approach. Hence, the
concept of grid computing was proposed [1–5].

A grid system is formed using many heterogeneous or homo-
geneous resources to deal with large-scale scientific problems.
There are many issues in using grid computing. How to appropri-
ately and efficiently assign resources to tasks, generally called job
scheduling, is one of the important issues. The main purpose of
job scheduling is to shorten the job completion time and enhance
the system throughput. A grid scheduling system should take the
various characteristics of grid applications and resources into ac-
count. In a grid environment, the resource providers and tasks are
all changing constantly, so the traditional scheduling algorithms,
e.g. ‘‘First Come, First Serve’’ may not be suitable for a dynamic
grid system. It is very important to assign appropriate resources to
tasks. Through a good scheduling method, the system can perform
better and applications can avoid unnecessary delays.

Various algorithms [6–14] are proposed to schedule jobs in grid
environments. Lots of heuristic algorithms adjust the scheduling

∗ Corresponding author.
E-mail address: rschang@mail.ndhu.edu.tw (R.-S. Chang).

strategies according to the change of the environments or types of
jobs. Although many proposed scheduling algorithms proved that
they are suitable for a dynamic environment, only little work has
been done on the aspect of job scheduling considering the real time
characteristics of grid resources.

Load balance is also an important issue in grid environment.
The main purpose of load balance is to balance the load of each
resource in order to enhance the resource utilization and increase
the system throughput. For a conventional distributed system,
many load balancing algorithms [15–17] have been proposed. But
theymay not be suitable for grid environments due to the different
characteristics in grids. Numbers of load balancing algorithms
[18–20] have been proposed for grid environments. Some take
the grid characteristics into account but do not follow changes in
the system status. Others may set a fixed balance threshold for
controlling the load situation of thewhole grid system. Hence, they
might not be suitable in a dynamic grid environment.

Based on this opportunity for improvement, we propose a
new framework and scheduling algorithm to balance the load of
a grid system with an adaptive balance threshold while trying
to minimize the makespan of job execution. We assign a job
to a resource depending on the resource’s characteristics while
simultaneously considering the load of the cluster. Local and global
updates allow the refreshment of the new status of resources in the
grid system. A more appropriate scheduling is achieved via these
updates.

This paper is organized as follows. Section 2 is an overview of
related work about job scheduling in Grid environment. Our pro-
posed grid framework and job scheduling algorithm are presented

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.05.014

http://dx.doi.org/10.1016/j.future.2011.05.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:rschang@mail.ndhu.edu.tw
http://dx.doi.org/10.1016/j.future.2011.05.014

992 Y.-H. Lee et al. / Future Generation Computer Systems 27 (2011) 991–998

in Section 3. Section 4 contains a summary of our experiments pa-
rameters, setup, and results. Finally, Section 5 offers conclusions
and implications for future work.

2. Related work

In the literature, many scheduling algorithms have been
proposed. Most of them can be applied to the grid environment
with suitable modifications. In general, they can be separated into
two types: batch mode and on-line mode. In this section, we will
introduce some scheduling algorithms for these two types. Finally,
some balancing strategies will be mentioned.

2.1. Batch mode heuristic scheduling algorithms

Jobs are queued and collected into a set when they arrive in the
batchmode. The scheduling algorithmwill start after a fixed period
time. Batch mode heuristic algorithms are more appropriate for
environments utilizing the same resource.

2.1.1. First come first served scheduling algorithm (FCFS)
In this algorithm, jobs are executed according to the order of

job arriving time. The next job will be executed in turn. The FCFS
algorithm [20] may induce a ‘‘convoy effect’’. The convoy effect
happens when there is a job with a large amount of workload in
the job queue.When this occurs, all the jobs queued behind itmust
wait a long time for the long job to finish.

2.1.2. Round robin scheduling algorithm (RR)
The RR algorithm [21] mainly focuses on the fairness problem.

The RR algorithmdefines a ring as its queue and also defines a fixed
time quantum. Each job can be executed onlywithin this quantum,
and in turn. If the job cannot be completed in one quantum, it
will return to the queue and wait for the next round. The major
advantage of RR algorithm is that jobs are executed in turn and
do not need to wait for the previous job completion. Therefore,
it does not suffer from a starvation problem. However, if the job
queue is fully loaded or workload is heavy, it will take a lot of time
to complete all the jobs. Furthermore, a suitable time quantum is
difficult to decide.

2.1.3. Min–min and max–min algorithm
The Min–min scheduling algorithm [3] sets the jobs that can be

completed earliest with the highest priority. Each job will always
be assigned to the resource that can complete it earliest.

Similar to Min–min algorithm, Max–min algorithm [3] sets the
highest priority to the job with the maximum earliest completion
time. The main idea of Max–min algorithm is to overlap long-
running tasks with short-running tasks.

Max–min can be used in cases where there are many shorter
tasks than there are longer tasks. For example, if there is only one
long task,Min–minwill first executemany short jobs concurrently,
and then execute the long task. Max–min will execute short jobs
concurrently with the long job.

2.1.4. Sufferage scheduling algorithm
The idea behind the sufferage scheduling algorithm is that

better mapping can be generated by assigning a machine to a task
that would ‘‘suffer’’ most in terms of expected completion time if
that machine is not assigned to it. In this algorithm, each job is
assigned according to its sufferage value. The sufferage value is
defined as the difference between its second earliest completion
time and its earliest completion time (two completion times with
different resources). The sufferage algorithm will pick a job in an
arbitrary order and assign it to the resource that gives the earliest

completion time. If another job has the earliest completion time
with same resource, the scheduler will compare their sufferage
values and choose the larger one. However, this algorithm may
have the starvation problem.

2.2. On-line mode heuristic scheduling algorithm

Jobs are scheduled when they arrive. Since the Grid environ-
ment is a heterogeneous system and the speed of each processor
varies quickly, the on-line mode heuristic scheduling algorithms
are more appropriate for the Grid environment.

2.2.1. Most fit task scheduling algorithm (MFTF)
The MFTF algorithm [9] mainly attempts to discover the fitness

between tasks and resources for user. It assigns resources to tasks
according to a fitness value, and the value is calculated as follows:

fitness(i, j) =
10000

1 + |Wi/Sj − Ei|
(1)

where Wi is the workload of the ith task, Sj is the CPU speed of
the jth node, and Ei is the expected time of the ith task. Wi/Sj is
the expected execution time using this node. |Wi/Sj − Ei| is the
difference of the estimated execution time and the expected task
execution time. Ei is determined by the user or estimated by the
machine. How to set Ei is calculated by (2).

Ei = A + n × S (2)

where A is the average response time of the 100 latest done tasks;
n is a non-negative real number and S is the standard deviation of
task response time for the 100 latest done task.

When the estimated execution time is closer to Ei, it means
that the node is more suitable for the task. However, the MFTF
scheduling algorithmhas someproblems for estimating. It does not
consider the resource utilization, and the estimated function is an
idealmethod. Therefore, incorrect schedulingmay occur in the real
environment.

2.2.2. Ant colony optimization (ACO) algorithm in job scheduling
ACO has been used to solve scheduling problems in the Grid

environment in recent years [10]. ACO algorithm is based on Ant
algorithm [10,11] and modified it to suit the Grid environment.
Like ACO algorithms, they needed some information such as
number of CPUs, MIPS for each processor, etc. to schedule tasks.
They used a parameter named pheromone to do the scheduling
action. A resource must submit the information to the resource
monitor, and the pheromone values are initialized at the beginning
of the algorithm as follows:

τj(0) = mxp + sj (3)

where τj(0) is the initial pheromone of the path from the resource
monitor to resource j. m is the number of processors and p is
the MIPS of each processor. sj is related to the communication
bandwidth ability of the resource j.

An encourage factor, a punish factor, and a load balancing factor
were subsequently added into the algorithm. When resource j
completes the job successfully, the pheromone of resource j will
be encouraged by the encouragement update rule as following:

τ new
j = ρ ∗ τ old

j + Ce ∗ K (4)

where τ new
j is the new pheromone after updating; τ old

j is the
pheromone before; ρ is the evaporation coefficient of pheromone;
Ce is the encourage factor, and K is the coefficient which is related
to the computing and communication quantity of the job.

Download English Version:

https://daneshyari.com/en/article/425701

Download Persian Version:

https://daneshyari.com/article/425701

Daneshyari.com

https://daneshyari.com/en/article/425701
https://daneshyari.com/article/425701
https://daneshyari.com

