
Future Generation Computer Systems 22 (2006) 611–619

Adaptive parallel I/O scheduling algorithm for
multiprogrammed systems

J.H. Abawajy

Deakin University, School of Information Technology, Geelong, Vic. 3217, Australia

Available online 17 November 2005

Abstract

As the rate at which disk drives read and write data is improving at a much slower pace than the speed of processors, I/O
has risen to become the bottleneck in high-performance computing for many applications. A possible approach to address this
problem is to schedule parallel I/O operations explicitly. To this end, we propose two new I/O scheduling algorithms and evaluate
the relative performance of the proposed policies against two baseline policies. Simulation results show that the proposed policies
outperform the baseline policies.
© 2005 Published by Elsevier B.V.

Keywords: I/O scheduling algorithm; Cluster computing; Parallel I/O; Performance analysis

1. Introduction

The widespread adoption of cluster computing as
a high performance computing platform has seen the
growth of data intensive applications such as digital li-
braries and image repositories. In addition to running
these applications on multiple processors, the paral-
lelization of I/O operations and the use of multiple disk
drives are required for achieving high system perfor-
mance. Parallel input/output techniques can help solve
this problem by creating multiple data paths between
memory and disks, that is, exploiting parallelism in
the I/O system. To this end, several parallel file sys-
tems (e.g., Parallel Input/OUtput System (PIOUS)[1]
and Parallel Virtual File System (PVFS)[2]) based on
user-level libraries have been developed to distribute

data over several nodes and providing low-level data
access mechanisms. Although these approaches have
helped reduce the I/O bottlenecks, it is shown that peak
performance is rarely attained from these coordinated
storage devices[3,4]. As a result, the performance of
carefully tuned parallel programs can slow down dra-
matically when they read or write files in such systems
[5].

The gap between the I/O subsystem and processors
is expected to increase in future since I/O performance
is limited by physical motion. Therefore, it is impera-
tive to find techniques that can improve the access per-
formance of storage devices despite their high latency.
Significant improvements in access latency relative to
processor and network speeds are unlikely mainly due
to physical limitations of I/O devices[6]. As a result,

0167-739X/$ – see front matter © 2005 Published by Elsevier B.V.
doi:10.1016/j.future.2005.09.008



612 J.H. Abawajy / Future Generation Computer Systems 22 (2006) 611–619

various methodologies over the past few years have
been devised to address the I/O bottleneck problem.
Most attention has focused on improving the perfor-
mance of I/O devices using fairly low-level parallelism
in techniques such as disk stripping[7], disk-directed
I/O [8], data distribution strategies and data layout
strategies[9,10], compiler support[11] and I/O run-
time libraries[12]. Prefetching and caching[13,14],
are another area of research considered for optimiz-
ing I/O performance as well. Several optimizations for
reducing data transfer time for parallel I/O have been
proposed in the past few years. This class of research
are focusing on thedata access strategies such ascol-
lective I/O [15] and the two-phase I/O optimization
[16], which reduces disk access time by splitting an
I/O operation into two phases: inter-processor data ex-
change through the network, and bulk accesses to the
disks. The placement of I/O servers to improve par-
allel I/O performance on switch-based clusters[17] is
another parallel I/O research focus. An important di-
mension and the one we are interested in is concerned
with the effective management of parallel I/O by using
appropriate I/O scheduling strategies.

In this paper, we focus on scheduling parallel I/O
operations to minimize the completion time of parallel
applications on cluster computing environments. We
present a set of new Parallel I/O scheduling algorithms
for multiprogrammed cluster computing environments
running parallel I/O workloads. Parallel I/O schedul-
ing is concerned with scheduling of parallel I/O op-
erations with the goal of minimizing the overall I/O
response times. The motivation for studying this prob-
lem is that parallel I/O has recently drawn increasing
attention as a promising approach to alleviating I/O
bottlenecks in cluster computing[2]. As noted in[18],
there is a lack of research that investigates the effec-
tiveness of parallel I/O scheduling strategies for mul-
tiprogrammed cluster computing environments. In the
multi-application environment, the parallel I/O system
is a shared resource which usually impacts the I/O per-
formance delivered to the simultaneously running ap-
plications. In addition, we believe that scheduling par-
allel I/O operations will become increasingly attractive
and can potentially provide substantial performance
benefits. We present simulation results showing that
the proposed I/O scheduling algorithms can produce a
substantial improvement over previous I/O scheduling
algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 is an overview of the system of interest and re-
lated work. Section3, discusses the proposed Parallel
I/O scheduling algorithms. The performance analysis
of the proposed scheduling policies is discussed in Sec-
tion 5. The results and discussions of the experiments
are presented in Section6. The conclusions and future
directions are given in Section7.

2. Overview

Parallel I/O is a necessary component of data-
intensive applications such as scientific simulations.
Parallel hardware storage systems with multiple disks
and high-bandwidth switched interconnect are becom-
ing increasingly available to fill this need. In this sec-
tion, we will present the system model assumed in this
paper. The scheduling problem and related work are
also briefly described.

2.1. System model

Fig. 1 shows the architecture of high performance
cluster computing system of interest. The system con-
sists of a set ofM independent processors,P =
{P1, P2, . . . , PM}, and a set ofN independent disks,
S = {D1, D2, . . . , DN}, that are connected by a fast
interconnection network. Data is stored on the disks
in units of blocks; a block is the unit of access from
a disk. In each parallel I/O operation a set of up toN
blocks, one from each disk, can be accessed. The blocks

Fig. 1. Architecture of the system.



Download English Version:

https://daneshyari.com/en/article/425745

Download Persian Version:

https://daneshyari.com/article/425745

Daneshyari.com

https://daneshyari.com/en/article/425745
https://daneshyari.com/article/425745
https://daneshyari.com

