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Abstract

As the rate at which disk drives read and write data is improving at a much slower pace than the speed of processors, I/O
has risen to become the bottleneck in high-performance computing for many applications. A possible approach to address this
problem is to schedule parallel I/O operations explicitly. To this end, we propose two new I/O scheduling algorithms and evaluate
the relative performance of the proposed policies against two baseline policies. Simulation results show that the proposed policies
outperform the baseline policies.
© 2005 Published by Elsevier B.V.

Keywords: I/O scheduling algorithm; Cluster computing; Parallel I/O; Performance analysis

1. Introduction

The widespread adoption of cluster computing as
a high performance computing platform has seen the
growth of data intensive applications such as digital li-
braries and image repositories. In addition to running
these applications on multiple processors, the paral-
lelization of I/O operations and the use of multiple disk
drives are required for achieving high system perfor-
mance. Parallel input/output techniques can help solve
this problem by creating multiple data paths between
memory and disks, that is, exploiting parallelism in
the I/O system. To this end, several parallel file sys-
tems (e.g., Parallel Input/OUtput System (PIOUS)[1]
and Parallel Virtual File System (PVFS)[2]) based on
user-level libraries have been developed to distribute

data over several nodes and providing low-level data
access mechanisms. Although these approaches have
helped reduce the I/O bottlenecks, it is shown that peak
performance is rarely attained from these coordinated
storage devices[3,4]. As a result, the performance of
carefully tuned parallel programs can slow down dra-
matically when they read or write files in such systems
[5].

The gap between the I/O subsystem and processors
is expected to increase in future since I/O performance
is limited by physical motion. Therefore, it is impera-
tive to find techniques that can improve the access per-
formance of storage devices despite their high latency.
Significant improvements in access latency relative to
processor and network speeds are unlikely mainly due
to physical limitations of I/O devices[6]. As a result,
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various methodologies over the past few years have
been devised to address the I/O bottleneck problem.
Most attention has focused on improving the perfor-
mance of I/O devices using fairly low-level parallelism
in techniques such as disk stripping[7], disk-directed
I/O [8], data distribution strategies and data layout
strategies[9,10], compiler support[11] and I/O run-
time libraries[12]. Prefetching and caching[13,14],
are another area of research considered for optimiz-
ing I/O performance as well. Several optimizations for
reducing data transfer time for parallel I/O have been
proposed in the past few years. This class of research
are focusing on thedata access strategies such ascol-
lective I/O [15] and the two-phase I/O optimization
[16], which reduces disk access time by splitting an
I/O operation into two phases: inter-processor data ex-
change through the network, and bulk accesses to the
disks. The placement of I/O servers to improve par-
allel I/O performance on switch-based clusters[17] is
another parallel I/O research focus. An important di-
mension and the one we are interested in is concerned
with the effective management of parallel I/O by using
appropriate I/O scheduling strategies.

In this paper, we focus on scheduling parallel I/O
operations to minimize the completion time of parallel
applications on cluster computing environments. We
present a set of new Parallel I/O scheduling algorithms
for multiprogrammed cluster computing environments
running parallel I/O workloads. Parallel I/O schedul-
ing is concerned with scheduling of parallel I/O op-
erations with the goal of minimizing the overall I/O
response times. The motivation for studying this prob-
lem is that parallel I/O has recently drawn increasing
attention as a promising approach to alleviating I/O
bottlenecks in cluster computing[2]. As noted in[18],
there is a lack of research that investigates the effec-
tiveness of parallel I/O scheduling strategies for mul-
tiprogrammed cluster computing environments. In the
multi-application environment, the parallel I/O system
is a shared resource which usually impacts the I/O per-
formance delivered to the simultaneously running ap-
plications. In addition, we believe that scheduling par-
allel I/O operations will become increasingly attractive
and can potentially provide substantial performance
benefits. We present simulation results showing that
the proposed I/O scheduling algorithms can produce a
substantial improvement over previous I/O scheduling
algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 is an overview of the system of interest and re-
lated work. Section3, discusses the proposed Parallel
I/O scheduling algorithms. The performance analysis
of the proposed scheduling policies is discussed in Sec-
tion 5. The results and discussions of the experiments
are presented in Section6. The conclusions and future
directions are given in Section7.

2. Overview

Parallel I/O is a necessary component of data-
intensive applications such as scientific simulations.
Parallel hardware storage systems with multiple disks
and high-bandwidth switched interconnect are becom-
ing increasingly available to fill this need. In this sec-
tion, we will present the system model assumed in this
paper. The scheduling problem and related work are
also briefly described.

2.1. System model

Fig. 1 shows the architecture of high performance
cluster computing system of interest. The system con-
sists of a set ofM independent processors,P =
{P1, P2, . . . , PM}, and a set ofN independent disks,
S = {D1, D2, . . . , DN}, that are connected by a fast
interconnection network. Data is stored on the disks
in units of blocks; a block is the unit of access from
a disk. In each parallel I/O operation a set of up toN
blocks, one from each disk, can be accessed. The blocks

Fig. 1. Architecture of the system.
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