
Future Generation Computer Systems 66 (2017) 11–26

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An approach for an efficient execution of SPMD applications on
Multi-core environments
Ronal Muresano a,∗, Hugo Meyer a,b, Dolores Rexachs a, Emilio Luque a

a Computer Architecture and Operating System Department (CAOS), University Autonoma of Barcelona (UAB), Barcelona, Spain
b Computer Sciences Group, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain

h i g h l i g h t s

• A method for efficient execution on Multicore cluster is presented.
• The method combines efficiency and speedup in order to improve the performance execution on multi-core clusters.
• A mapping and a scheduling techniques are proposed in order to improve the efficiency and speedup.
• The method finds the maximum strong and weak scalability point with error rates lower than 5%.
• Considerable improvements are achieved using the method on large scale systems.

a r t i c l e i n f o

Article history:
Received 4 June 2015
Received in revised form
16 November 2015
Accepted 19 June 2016
Available online 1 July 2016

Keywords:
Performance improvements
Multi-core
Mapping
Scheduling
Scalability analysis
SPMD

a b s t r a c t

Executing traditional Message Passing Interface (MPI) applications on multi-core cluster balancing speed
and computational efficiency is a difficult task that parallel programmers have to deal with. For this
reason, communications on multi-core clusters ought to be handled carefully in order to improve
performance metrics such as efficiency, speedup, execution time and scalability. In this paper we focus
our attention on SPMD (Single Program Multiple Data) applications with high communication volume
and synchronicity and also following characteristics such as: static, local and regular. This work proposes
a method for SPMD applications, which is focused on managing the communication heterogeneity
(different cache level, RAM memory, network, etc.) on homogeneous multi-core computing platform
in order to improve the application efficiency. In this sense, the main objective of this work is to find
analytically the ideal number of cores necessary that allows us to obtain the maximum speedup, while
the computational efficiency is maintained over a defined threshold (strong scalability). This method also
allows us to determine how the problem size must be increased in order to maintain an execution time
constant while the number of cores are expanded (weak scalability) considering the tradeoff between
speed and efficiency. This methodology has been tested with different benchmarks and applications and
we achieved an average improvement around 30.35% of efficiency in applications tested using different
problems sizes and multi-core clusters. In addition, results show that maximum speedup with a defined
efficiency is located close to the values calculated with our analytical model with an error rate lower than
5% for the applications tested.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The increasing use of multi-core processors in High Perfor-
mance Computing (HPC) is evident in the top500,1 inwhichmost of

∗ Corresponding author.
E-mail addresses: rmuresano@caos.uab.es (R. Muresano),

hugo.meyer@caos.uab.es, hugo.meyer@bsc.es (H. Meyer), dolores.rexachs@uab.es
(D. Rexachs), emilio.luque@uab.es (E. Luque).
1 TOP500: a list which provides a rank of powerful parallel machines for HPC on

the world, www.top500.org.

today’s clusters are set up with multi-core architecture. However,
the increase in complexity and the hierarchical communication
architecture present on these multi-core clusters create signifi-
cant programming challenges which have to be managed carefully
if programmers wish to harness the inclusion of more parallelisms
inside the nodes [1,2]. The parallel programmers have to deal
with some architectural characteristics, such as: number of cores
per chip, shared cache between cores, bus interconnection, mem-
ory bandwidth, communication congestion, etc. [3]. All these ele-
ments are becoming more important for programmer to consider,

http://dx.doi.org/10.1016/j.future.2016.06.016
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.06.016
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.06.016&domain=pdf
mailto:rmuresano@caos.uab.es
mailto:hugo.meyer@caos.uab.es
mailto:hugo.meyer@bsc.es
mailto:dolores.rexachs@uab.es
mailto:emilio.luque@uab.es
http://www.top500.org
http://dx.doi.org/10.1016/j.future.2016.06.016


12 R. Muresano et al. / Future Generation Computer Systems 66 (2017) 11–26

Fig. 1. Mapping and execution of SPMD applications on a Multi-core cluster.

in case that application’s scalability and efficiency want to be im-
proved [4].

The multi-core nodes integrate a homogeneous computation
architecture, which in some cases are composed of 2, 4, 6, 8, etc.,
cores by chip processors. However, a node can include several
chip processors creating a small high speed parallel machine
inside the node. Nevertheless, these nodes have to be analyzed as
heterogeneous when we are working with applications that have
a very high communication frequency between parallel processes.
The communications between cores in these architectures use a
hierarchical communication architecture that uses different paths
and speeds to perform the communication processes inside the
node [5–7]. For example, the parallel processes in a multi-core
cluster can communicate using the cachememory ormainmemory
for communications inside the node (Intercore and Interchip
communications), or using the local area network to perform the
communication with another process located in another node
of the cluster (Internode communication). This communication
architecture can create unbalanced issues that seriously affect the
application performance, especially those applications which have
a very coupled behavior (Fig. 1).

Performance metrics that are commonly used to measure, such
as: execution time, speedup, computational efficiency and strong
andweak application scalability are all seriously affected. All these
metrics are influenced in different ways due to the degradations
and load balancing problems generated by the communications
links [8]. Another important aspect to consider is that many
MPI applications have been designed without considering the
computational architecture characteristics. An example is the
monocore nodes, where the communication processes were
homogeneous and most of them have to be updated in order to
take advantages of multi-core architecture.

A parallel paradigm which is seriously affected when executed
on a hierarchical communication architecture is the SPMD (Single
Program Multiple Data). This paradigm is focused on executing
the same program in all processing elements but using different

sets of tiles [9,10]. However, many SPMD applications share data
between parallel processes and their communications can be a
very big problem, especially when we have applications very well
coupled, such as: application of finite differences, fluid dynamics,
weather models, econometrics models, etc., all of which have to
communicate tiles betweenMPI processes in each iteration. Hence,
a SPMD tile is computed in a similar timedue to the homogeneity of
the core. However, the communication processes amongneighbors
are performed using different communications links depending
on the location of the SPMD processes on the multi-core clusters.
These behaviors may cause serious delays in tile synchronization
when these applications are executed on multi-core clusters.

An example of this problem is illustrated in Fig. 1. The example
shows us an SPMD applicationwhere each tile communicates with
four tiles. As we can observe, this application needs to repeat a set
of iterations but the iteration i+1 depends on the results obtained
in the iteration i. In this sense, the tiles are divided and assigned
to each core to start the computation. Then, the computation
processes have to wait until the slowest communications link
finishes receiving its information to start the new iteration. These
delays are due to the tile dependencies on the code. In some cases,
the communication speed between MPI processes can vary in an
order of magnitude for the same data packages depending on the
link.

To solve these inefficiencies, we have developed amethodology
which includes an analytical method that allows us to manage
the communication latencies using some characteristics of each
SPMD application over the parallel machine (e.g. computation and
communication tile ratio). This method permits us to determine
a relationship between scalability and efficiency. The objectives
of this method are addressed in two analytically directions. The
first one is to find the ideal number of cores needed to obtain the
maximum speedupwith a certain level of efficiency defined by the
programmer (maximum strong scalability point). The second one
is to determine how the application problem has to be increased
in order to maintain an execution time constant while the number



Download English Version:

https://daneshyari.com/en/article/425816

Download Persian Version:

https://daneshyari.com/article/425816

Daneshyari.com

https://daneshyari.com/en/article/425816
https://daneshyari.com/article/425816
https://daneshyari.com

