
Future Generation Computer Systems 51 (2015) 7–19

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the impact of process replication on executions of large-scale
parallel applications with coordinated checkpointing
Henri Casanova a, Yves Robert b,c, Frédéric Vivien b, Dounia Zaidouni b,∗
a University of Hawaii at Manoa, Honolulu, USA
b ENS Lyon & INRIA, France
c University of Tennessee Knoxville, USA

h i g h l i g h t s

• Process replication combined with checkpoint–rollback–recovery.
• Exact values for the Mean Number of Failures To Interruption and the Mean Time To Interruption for Exponential failure distributions.
• Closed-form expression for the Mean Time To Interruption for Weibull distributions.
• Scenarios where replication is beneficial.

a r t i c l e i n f o

Article history:
Received 24 March 2014
Received in revised form
21 February 2015
Accepted 5 April 2015
Available online 27 April 2015

Keywords:
Fault-tolerance
Parallel computing
Checkpoint
Rollback–recovery
Process replication

a b s t r a c t

Processor failures in post-petascale parallel computing platforms are common occurrences. The tradi-
tional fault-tolerance solution, checkpoint–rollback–recovery, severely limits parallel efficiency. One so-
lution is to replicate application processes so that a processor failure does not necessarily imply an
application failure. Process replication, combined with checkpoint–rollback–recovery, has been recently
advocated.We first derive novel theoretical results for Exponential failure distributions, namely exact val-
ues for the Mean Number of Failures To Interruption and the Mean Time To Interruption. We then extend
these results to arbitrary failure distributions, obtaining closed-form solutions for Weibull distributions.
Finally, we evaluate process replication in simulation using both synthetic and real-world failure traces
so as to quantify average application makespan. One interesting result from these experiments is that,
when process replication is used, application performance is not sensitive to the checkpointing period,
provided that period is within a large neighborhood of the optimal period. More generally, our empirical
results make it possible to identify regimes in which process replication is beneficial.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As plans are made for deploying post-petascale high perfor-
mance computing (HPC) systems [1,2], solutions need to be de-
veloped for ensuring resilience to processor failures. Resilience is
particularly critical for applications that enroll large numbers
of processors. For such applications, processor failures are pro-
jected to be common occurrences [3–5]. For instance, the 45,208-
processor Jaguar platform is reported to experience on the order of
1 failure per day [6], and its scale is modest compared to upcoming

∗ Corresponding author.
E-mail addresses: henric@hawaii.edu (H. Casanova), Yves.Robert@ens-lyon.fr

(Y. Robert), Frederic.Vivien@ens-lyon.fr (F. Vivien), Dounia.Zaidouni@ens-lyon.fr
(D. Zaidouni).

platforms. Failures occur because not all faults are automatically
detected and corrected in current production hardware, due to
both technical challenges and high cost. To tolerate failures the
standard approach is to use rollback and recovery for resuming
application execution from a previously saved fault-free execu-
tion state, or checkpoint, which is termed checkpoint–rollback–
recovery (CRR). Frequent checkpointing leads to higher overhead
during fault-free execution, but less frequent checkpointing leads
to a larger loss when a failure occurs. A large volume of literature
is devoted to CRR, including both theoretical and practical results.
The former typically rely on assumptions regarding the probability
distributions of times to failure of the processors (e.g., Exponen-
tial, Weibull), while the latter rely on simulations driven by failure
datasets obtained on real-world platforms.

Even assuming an optimal checkpointing strategy, at large scale
processors end up spending as much or even more time saving

http://dx.doi.org/10.1016/j.future.2015.04.003
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.04.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.04.003&domain=pdf
mailto:henric@hawaii.edu
mailto:Yves.Robert@ens-lyon.fr
mailto:Frederic.Vivien@ens-lyon.fr
mailto:Dounia.Zaidouni@ens-lyon.fr
http://dx.doi.org/10.1016/j.future.2015.04.003


8 H. Casanova et al. / Future Generation Computer Systems 51 (2015) 7–19

#1

#2

#3

#4

0 1 2 3 4 5 6 7 8 9 10 11 12 time

downtime

checkpoint

process

process

process

process

recovery

Fig. 1. Gantt chart for a example application execution with process replication
on 8 processors (4 logical MPI processes with one replica per process). A gray
fill indicates that a processor is computing. A red fill denotes when a process is
experiencing a downtime. Red hatches indicate when a processor is not longer
participating in the application execution. Black hatches indicateswhen a processor
is involved in saving a checkpoint. A green fill indicateswhen a processor is involved
in a recovery. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

state than computing state, leading to poor parallel efficiency
[3–5]. Consequently, additional resilience mechanisms must be
used. In this work we focus on replication: several processors per-
form the same computation synchronously, so that a failure of one
of these processors does not lead to an application failure. Replica-
tion is an age-old fault-tolerance technique, but it has gained trac-
tion in the HPC context only relatively recently [5,7,8].

While replication wastes compute resources in fault-free
executions, it can alleviate the poor scalability of CRR.With process
replication, a single instance of an application is executed but
each application process is (transparently) replicated. For instance,
instead of executing the application with 2n distinct processes
on a 2n-processor platform, one executes the application with n
logicalprocesses so that there are two replicas of each process, each
running on a distinct physical processor.

We illustrate this approach on an example in Fig. 1 for a
platform with 8 processors running an application with 4 MPI
processes so that each process has one replica (i.e., 8 processes in
total). At time 1, one of the replicas for process #3 experiences a
failure and a downtime (of 1 s). Because the other replica is still
running, the application does not fail. At time 2, a replica of process
#1 and a replica of process #4 each experience a failure, but once
again the application can continue running. At time 4, a checkpoint
is saved (perhaps as dictated by a periodic checkpointing strategy),
which is possible because at least one replica of each process is
running. At time 6 two other failures occur but have no impact on
the application execution because enough process replicas remain
(one of these two failures occurs at a processor that is no longer
participating in the application execution). Another checkpoint is
saved at time 8. At time 10, a failure and downtime occur for the
only remaining replica of process #3. This causes an application
failure, and triggers a recovery. At time 11.5, all processors resume
from a previous checkpoint, each with 2 replicas. In this example,
for simplicity,wedonot show failures during checkpointing and/or
recovery, but we do allow such failures in this work.

Process replication is sensible because the mean time to fail-
ure of a group of two replicas is larger than that of a single pro-
cessor, meaning that the checkpointing frequency can be lowered
thus improving parallel efficiency. In [9] Ferreira et al. have stud-
ied process replication, with a practical implementation and some
analytical results. In this paper, we focus on the theoretical foun-
dations of process replication, and we make the following novel
contributions:

• We derive exact expressions for the MNFTI (Mean Number of
Failures To Interruption) and the MTTI (Mean Time To Inter-
ruption) for arbitrary numbers of replicas assuming Exponen-
tial failures.

• We extend these results to arbitrary failure distributions, no-
tably obtaining closed-form solutions in the case ofWeibull fail-
ures.

• We present simulation results, based on both synthetic and
real-world failure traces, to compare executions with andwith-
out process replication. We find that with process replication
application performance is not sensitive to the checkpointing
period, provided that period is within a large neighborhood of
the optimal period.

• Based on our results, we determine in which conditions the
use of process replication is beneficial. We perform a fair com-
parison between the replication and the no-replication cases,
i.e., our comparison is not impacted by the (critical) choice of a
particular checkpointing period in the no-replication case.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 states our assumptions and defines the
process replication approach. Section 4 presents the bulk of
our theoretical contribution. Section 5 presents our simulation
methodology and empirical results obtained in simulation. Finally,
Section 6 concludes the paper with a summary of our findings and
directions for future work.

2. Related work

Checkpointing policies have been widely studied. In [10], Daly
studies periodic checkpointing for Exponential failures, general-
izing the well-known bound obtained by Young [11]. In [12] he
studies the impact of sub-optimal checkpointing periods. In [13],
Venkatesh develops an ‘‘optimal’’ checkpointing policy, based on
the popular assumption that optimal checkpointing must be peri-
odic. In [14], Bouguerra et al. prove that the optimal checkpoint-
ing policy is periodic when checkpointing and recovery overheads
are constant, for either Exponential or Weibull failures. But their
results rely on the unstated assumption that all processors are
rejuvenated after each failure and after each checkpoint. In [15],
Bougeret et al. show that this assumption is unreasonable for
Weibull failures. They propose optimal solutions for Exponential
failures and dynamic programming solutions for Weibull failures.
Exponential failures are often assumed due to their convenient
memoryless property, i.e., the fact that the time to the next failure
does not depend onwhen the last failure has occurred [16]. But the
non-memoryless Weibull distribution is recognized as a more re-
alistic model [17–21]. The work in this paper relates to CRR in the
sense that we study a replication mechanism that is complemen-
tary to checkpointing.

In spite of all the above advances, the feasibility of pure CRR
for large-scale systems has been questioned [3–5]. Replication has
long been used as a fault-tolerance mechanism in distributed sys-
tems [22]. Using replication together with CRR has been proposed
in the context of grid computing [23]. One concern with replica-
tion is the induced resource waste. However, given the scalabil-
ity limitations of pure CRR, replication has recently received more
attention in the HPC literature [5,7,8]. The use of redundant MPI
processes is advocated in [24] for HPC applications, and in [25] for
grid computing with volatile nodes. The work by Ferreira et al. [9]
has studied the use of process replication for MPI (Message Pass-
ing Interface) applications, using 2 replicas per MPI process. They
provide a theoretical analysis of parallel efficiency, an MPI imple-
mentation that supports transparent process replication (includ-
ing failure detection, consistent message ordering among replicas,
etc.), and a set of experimental and simulation results. Partial re-
dundancy is studied in [26,27] (in combination with coordinated



Download English Version:

https://daneshyari.com/en/article/425841

Download Persian Version:

https://daneshyari.com/article/425841

Daneshyari.com

https://daneshyari.com/en/article/425841
https://daneshyari.com/article/425841
https://daneshyari.com

