
Future Generation Computer Systems 51 (2015) 20–35

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Bumper: Sheltering distributed transactions from conflicts
Nuno Diegues ∗, Paolo Romano
INESC-ID, Rua Alves Redol 9, Lisbon, Portugal
Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, Portugal

h i g h l i g h t s

• Cloud data stores that expose distributed transactions suffer of transaction aborts.
• We identify that many aborts can be avoided while preserving strong consistency.
• With Bumper, we reduced aborts for transactions to nearly 0% in many workloads.
• The performance and scalability improved up to 3x in conflict-prone applications.
• Our approach uses a novel distributed protocol that scales to hundreds of servers.

a r t i c l e i n f o

Article history:
Received 6 February 2015
Received in revised form
15 March 2015
Accepted 3 April 2015
Available online 30 April 2015

Keywords:
Distributed transactions
Spurious aborts
1-copy serializability
High scalability

a b s t r a c t

Large scale cloud applications are difficult to program due to the need to access data in a consistent man-
ner. To lift this burden from programmers, Deferred Update Replication (DUR) protocols provide serial-
izable transactions with both high availability and performance in read-dominated workloads. However,
the inherently optimistic nature of DUR protocols makes them prone to thrashing in conflict-intensive
scenarios: existing DUR schemes, in fact, avoid any synchronization during transaction execution; thus,
these schemes end up aborting any update transaction whose reads are no longer up to date by the time
it attempts to commit.

To tackle this problem, we introduce Bumper, a set of innovative techniques to reduce aborts of trans-
actions in high-contention scenarios. At its core, Bumper relies on two key ideas. First, we spare update
transactions from spurious aborts (i.e., unnecessary aborts of serializable transactions), by attempting to
serialize the transactions in the past. For this, we use a novel distributed concurrency control scheme that
we call Distributed Time-Warping (DTW). And second, we avoid aborts due to contention hot spots (that
cannot be tackled by DTW) via a programming abstraction that we call Delayed Actions. These, allow for
efficiently serializing, in an abort-free fashion, the execution of conflict-prone data manipulations.

By means of an extensive evaluation, on a distributed system of 160 nodes, we show that Bumper
can boost performance up to 3× in conflict-intensive workloads, while imposing negligible (about 2.5%)
overheads in uncontended scenarios.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The advent of the cloud computing paradigm has empowered
programmers with the ability to scale out their applications easily
to hundreds of nodes in a distributed system. However, developing
applications capable of effectively exploiting the computational
capabilities of large scale distributed cloud platforms is far from
being a trivial task.

Data management systems help programmers to deal with
this by providing the abstraction of serializable distributed

∗ Corresponding author at: INESC-ID, Rua Alves Redol 9, Lisbon, Portugal.
E-mail address: nmld@tecnico.ulisboa.pt (N. Diegues).

transactions. A well-established approach to implement this ab-
straction is that of DeferredUpdate Replication (DUR) [1,2]: servers
replicate data, to which clients perform requests of transactions;
servers synchronize only at the commit of the transactions to ei-
ther atomically update data across the servers or to abort.

This type of protocols follows an optimistic approach to concur-
rency control [3], as accesses in transactions are performed with-
out enforcing synchronization, and the serializability is ensured in
the commit operation during validation of the transaction. The lit-
erature is rich in enhancements to optimistic concurrency control,
for instance by relying on multi-versions [4–6]: these allow effi-
cient read-only transactions, by sparing them from any aborts and
remote validations. Another key property to enhance scalability is
that of genuine partial replication. In this property the execution

http://dx.doi.org/10.1016/j.future.2015.04.002
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.04.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.04.002&domain=pdf
mailto:nmld@tecnico.ulisboa.pt
http://dx.doi.org/10.1016/j.future.2015.04.002


N. Diegues, P. Romano / Future Generation Computer Systems 51 (2015) 20–35 21

(a) Abort that time-warp can avoid. (b) Abort that delayed action can avoid.

Fig. 1. Examples of executions that cause spurious aborts when using typical DUR protocols [12,4,5,13,14]. These can be avoided by using the two techniques that Bumper
encompass: namely time-warping and delayed actions.

of a transaction can only involve nodes that replicate data items it
accessed [2].

1.1. Identified problems

The aforementioned DUR systemswere shown to performwell,
even in large scale, while providing strong semantics in the form
of transactions. However, as we shall see later in the paper, the
scalability of these systems can be critically challenged in conflict-
prone scenarios.

The main factors constraining the scalability of these systems
are of a twofold nature. They are both related to the algorithms
used to regulate concurrency among transactions, as well as to the
degree of parallelism admitted by the applications:

• State of the art DUR protocols rely on overly conservative
validation schemes. These schemes abort an update transaction,
whenever any of its reads is no longer up to date, by the time
it requests to commit. This mechanism gained wide adoption
because it can be implemented efficiently. However, we note
that it does not represent a necessary condition to detect non-
serializable histories [7], and, as we will show, it can induce a
high number of spurious (i.e., unnecessary) aborts.
• It is well understood that the maximum degree of parallelism

(and hence, of scalability) admitted by any transactional
system is deeply affected by the data access patterns exhibited
by the applications deployed over them [8,9]. For instance,
several standard online processing transactional profiles are
characterized by contention hot spots; these are frequently
updated data items, such as warehouse balance counters in the
knownTransaction Processing PerformanceCouncil Benchmark
C (TPC-C) [10]. Transactions accessing such data items are
not only inherently non-parallelizable; they are also prone to
undergo repeated aborts, which can have detrimental effects on
the system’s throughput and user-perceived responsiveness.

1.2. Contributions

We address the issues discussed above by introducing Bumper:
a set of mechanisms aimed to shelter transactions from conflicts,
thus enhancing scalability in conflict-prone scenarios while
ensuring strong-consistency (1-copy serializability [11]). At its
core, Bumper relies on two novel mechanisms to prevent different
types of conflicts: distributed time-warping (time-warping for the
sake of brevity) and delayed actions.

The idea at the basis of time-warping is to prevent (a type of)
spurious aborts that do not threaten the serializability of transac-
tions. We illustrate such type of aborts in Fig. 1(a): many typical
DUR protocols [12,4,5,13,14] abort the update transaction T in the
example; the reason is that it read item x, and transaction A con-
currently committed with a write to x, making the read of T stale.

The intuition of this common approach that leads to such aborts
is that, in DUR protocols, update transactions are required to com-
mit in the logical present, i.e. the snapshot observed by transaction

T must be valid by taking into account every transaction commit-
ted before T . Looking back at Fig. 1(a), we see that such an approach
leads to a spurious abort of T . In fact, in such a scenario, it is possi-
ble to safely serialize T before A, and thus spare its abort.

A key property of time-warping consists in its efficiency. From a
theoretical perspective, it is straightforward to design an algorithm
capable of accepting every serializable history: it suffices to track
the full graph of dependencies between every transaction and
to ensure its acyclicity [3]. Unfortunately, this is an unbearably
onerous approach, especially in a large scale system. Conversely,
time-warping uses a novel, lightweight validation mechanism,
which tracks only direct dependencies developed by a transaction
during its execution (such as the ones shown in Fig. 1). Not only
does thismechanismprevent spurious aborts thatwould be caused
by the validation schemes employed by traditional systems; it
can also be implemented very efficiently and in a genuine fashion
(i.e., by only collecting information at nodes that are involved in
the distributed transaction). One of the key contributions of this
article is precisely in designing an efficient implementation of
time-warping. We show that this technique can effectively reduce
aborts, while introducing minimal additional overhead.

Clearly, there exist limits to the aborts that time-warping can
avoid. An example is shown in Fig. 1(b), where transactions C and
D read and write the same data item z. Since they mutually miss
each others write, neither one can be time-warp committed and
serialized before the other.

To cope with these challenging conflict patterns, we introduce
a programming abstraction for distributed transactions, comple-
mentary to time-warping, which we name delayed action: this is
a code fragment to be executed transactionally, but whose side-
effects/outputs are not observed elsewhere in the encompassing
transaction. By allowing programmers towrap conflict-prone code
within a delayed action, Bumper can postpone its execution until
the transaction’s commit procedure. At that point it can guaran-
tee that the snapshot observed will not be invalidated by a concur-
rent transaction. This allows ensuring that a delayed action cannot
cause the abort of its encompassing transaction, while guarantee-
ing that it is atomically executed in the scope of the transaction
that triggered it.

The key ideas at the basis of Bumper (i.e., time-warping and de-
layed actions) are applicable to several systems, such as SCORe [5],
P-Store [2], Spanner [6] or D2STM [12]. In this paper, we demon-
strate their practicality by integrating them with SCORe [5], a
highly scalable DUR protocol that employs genuine partial repli-
cation and a decentralized multi-versioning algorithm. Our evalu-
ation, employing 4well-known benchmarks and 160 nodes, shows
that Bumper can boost performance up to 3× in conflict-intensive
workloads, with negligible (2%) overheads in uncontended scenar-
ios.

The structure for the rest of this paper is as follows. We start by
presenting the system model in Section 2. Section 3 presents the
mechanisms at the base of Bumper, whose correctness we discuss
in Section 4. We further refine the proposed solution in Section 5,
and present its experimental evaluation in Section 6. Finally, we
overview related work in Section 7 and conclude in Section 8.



Download English Version:

https://daneshyari.com/en/article/425842

Download Persian Version:

https://daneshyari.com/article/425842

Daneshyari.com

https://daneshyari.com/en/article/425842
https://daneshyari.com/article/425842
https://daneshyari.com

