
Future Generation Computer Systems 37 (2014) 1–13

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Two new fast heuristics for mapping parallel applications on
cloud computing
I. De Falco, U. Scafuri, E. Tarantino ∗

Institute of High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via P. Castellino 111, 80131 Naples, Italy

h i g h l i g h t s

• The paper deal with the mapping problem.
• Specific reference is made to task interaction graph applications.
• Two new fast heuristics are proposed.
• These heuristics are improvements of the classical Min–min and Max–min algorithms.
• The results demonstrate the effectiveness of the proposed algorithms.

a r t i c l e i n f o

Article history:
Received 19 December 2012
Received in revised form
16 December 2013
Accepted 24 February 2014
Available online 6 March 2014

Keywords:
Cloud computing
Mapping
Communicating tasks
Heuristics

a b s t r a c t

In this paper two new heuristics, named Min–min-C and Max–min-C, are proposed able to provide near-
optimal solutions to themapping of parallel applications, modeled as Task Interaction Graphs, on compu-
tational clouds. The aim of these heuristics is to determine mapping solutions which allow exploiting at
best the available cloud resources to execute such applications concurrentlywith the other cloud services.

Differently from their originating Min–min and Max–min models, the two introduced heuristics take
also communications into account. Their effectiveness is assessed on a set of artificial mapping problems
differing in applications and in node working conditions. The analysis, carried out also by means of
statistical tests, reveals the robustness of the two algorithms proposed in coping with the mapping of
small- and medium-sized high performance computing applications on non-dedicated cloud nodes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The cloud paradigm [1–3], commercially supported by impor-
tant firms as for instance Google [4], Amazon [5], andMicrosoft [6],
refers to the use of computing resources (hardware and software)
delivered as a service over a network.

The current cloud systems offer on-demand a broad range of
virtualized services which can be classified into three major mod-
els: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). IaaS refers to the practice of
delivering on demand IT infrastructure as a commodity to cus-
tomers. PaaS provides a development platform inwhich customers
can create and execute their own applications. SaaS endows the
user with an integrated service comprising hardware, develop-
ment platforms, and applications. All these models allow users to

∗ Corresponding author. Tel.: +39 081 6139525; fax: +39 081 6139531.
E-mail address: ernesto.tarantino@na.icar.cnr.it (E. Tarantino).

have at their disposal the resources needed without having any
knowledge about their numbers, characteristics, and location.

Although unsuitable to efficiently solve compute-intensive
parallel applications,many efforts are being dedicated bymanufac-
turers and scientists to provision the cloud systemswith new func-
tionalities. These capabilities allow executing in reasonable times
small- and medium-sized high performance computing (HPC) ap-
plications [7–9].

For the contemporary cloud systems the customers who have
to execute in parallel amultitask application can already negotiate,
by an IaaS contract, the leasing of virtual machines for a prefixed
time interval. Unfortunately such a leasing generally provides
functionalities relatively to the networking, the data storage, the
physical servers, and the virtualization software. Themanagement
of the operating system, of the middleware and of the runtime
phase, the choice of the number of virtual machines with specific
HW/SW characteristics, the mapping of the tasks on these virtual
machines, and the scheduling are left to the customers.

An alternative is that the customers want to commit to a cloud
middleware the management and the execution of their multitask

http://dx.doi.org/10.1016/j.future.2014.02.019
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.02.019
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.02.019&domain=pdf
mailto:ernesto.tarantino@na.icar.cnr.it
http://dx.doi.org/10.1016/j.future.2014.02.019


2 I. De Falco et al. / Future Generation Computer Systems 37 (2014) 1–13

applications concurrently with the current workload of the cloud
system. This service can be negotiated by a new form of PaaS
contract. To support this new contract the cloud middleware, in
addition tomapping on the physical resources the virtualmachines
and all the other services requested by other customers, must
also establish the optimal task/node deployment for the submitted
multitask applications.

Unfortunately, most of themapping tools described in scientific
literature make reference to the allocation of independent tasks.
Only a few of them can dealwith applicationswith communicating
tasks [10–13], yet they all can work only as long as applications
are modeled as Direct Acyclic Graphs (DAGs) [14–16]. This kind
of applications is much less general and flexible than multitask
applications modeled as Task Interaction Graphs (TIGs) [17,18].
In the TIG model all the tasks are considered simultaneously
executable and the communications can take place at any time, in
general according to iterative and non-deterministic patterns. This
means that there is no precedence relationship among tasks: each
task cooperates with its neighbors [19].

In this paper we wish to move a first step towards filling this
gap by introducing two mapping heuristics to efficiently allocate
TIG applications on non-dedicated cloud resources. As shown in
[20,21], given theNP-complete nature of themapping,metaheuris-
tic algorithms are the most appropriate to attain approximate so-
lutions that meet the application requirements in a reasonable
time [22–24].

In [25] a wide comparison among eleven heuristics is reported
for allocation of independent tasks. The conclusions state that
for the different situations, implementations, and parameter
values used there, Genetic Algorithm (GA) consistently gave the
best results. The average performance of the relatively simple
Min–min [26] heuristic was always within 12% of the GA heuristic.
AlsoMax–min [27] turns out to be quite effective and, asMin–min,
has the advantages of not necessitating parameter tuning and
of being much faster in terms of convergence times. Moreover,
more recently, Luo et al. [28] have taken 20 different fast greedy
heuristics into accountwhen aiming to allocate independent tasks.
Their results confirm that the classical Min–min performs very
well, since it is within the three best algorithms.

Since literature assesses the robustness and the effectiveness of
Min–min andMax–min for independent tasks, we have decided to
improve them so that they can account for communication times
too. It should be emphasized that these seminal algorithms take
care of computations only, so communications among tasks are
neglected whenever a node has to be chosen as the most suitable
allocation for a given task. This is due to the sequential nature
of these algorithms, which iteratively place one task at a time, so
communication times cannot be considered if all the tasks have not
yet been mapped.

To overcome this drawback a brand-new way of taking com-
munications into account in algorithms such as Min–min and
Max–min is presented. Namely, two new heuristics, Min–min-C
and Max–min-C, are introduced. They are based on the classical
Min–min and Max–min algorithms yet communications too are
considered, and seem therefore very promising for an effective
mapping of communicating tasks making up parallel applications
modeled as TIGs.

The effectiveness of our two algorithms is evaluated by per-
forming themapping of artificial applications on a cloud infrastruc-
ture at different workload operating conditions, and is assessed
against that of the two original algorithms.

Paper structure is as follows: Section 2 reports on the related
research; Section 3 presents the working environment, while
Section 4 explains our algorithms. In Section 5 the test problems
experienced are reported, the results attained are discussed, and a
statistical analysis is presented. Finally in Section 6 conclusions are
given, and a discussion on the approach proposed and on the open
problems to deal with is outlined.

2. Related research

The selection of the cloud resources that, on the basis of physical
characteristics (computational power, frequency, memory, band-
width, . . . ) and load (known or estimated), better support the ser-
vices as they are negotiated by the customers is nearly always a
problem of considerable difficulty.

In [29,30] the mapping is performed manually through a labo-
rious procedure whose results are particularly error-prone when
the number of virtual machines reaches hundreds or thousands of
nodes.

Fang et al. in [23] discuss a mapping mechanism related to
independent tasks, based on the two levels of load balance, which
considers the flexibility and virtualization in cloud computing.
The first-level scheduling is from the users’ application to the
virtual machine, and creates the description of a virtual machine
according to the resources and other configuration information
demanded by the application tasks. The second level is from the
virtual machine to host resources, and finds appropriate resources
for the virtual machine in the host resources under certain rules,
based on the description of the virtual machine for each task. The
load of the virtual machine is evaluated by the predicted execution
time of the tasks running on it.

In [31,32] approaches for a rule-based mapping which are able
to automatically adapt themapping between virtual machines and
physical hosts’ resources are advanced. The authors extended the
open source solution Eucalyptus and the papers differ for the per-
formance evaluationmetrics of the chosenmapping policies: max-
imizing computation performance and virtual machine locality to
achieve a high performance, and minimizing energy consumption
in the first case, while the second approach includes the waiting
time, the turnaround time, and the response time of the proposed
algorithm.

Unfortunately the criteria and the mapping algorithms pre-
sented up to now cannot be exploited to efficiently execute TIG
applications on cloud nodes. In fact, the mapping of this kind of
applications introduces further degrees of complexity if the cloud
resources, besides being heterogeneous and geographically dis-
persed, have features that vary even substantially over time as
the local loads and the network bandwidth dynamically change
[26,33]. The same holds for the classical mapping algorithms
which, known as NP-complete already on traditional parallel and
distributed systems, cannotwork adequately in heterogeneous en-
vironments [34], such as clouds are.

Considered the NP-nature of the mapping problem, a meta-
heuristic algorithm has been investigated by Mehdi et al. [24]. To
speed up themapping process and ensure the fulfillment of all task
deadlines and QoS requirements, the authors introduce a fast algo-
rithm that can find a mapping using genetic algorithms with ‘exist
if satisfy’ condition. Mapping time and makespan are the perfor-
mance metrics that are used to evaluate the proposed system.

A very recent and interesting paper is [13], in which two greedy
algorithms are used to generate the static allocation for the tasks
composing a DAG application in a cloud. One is called Cloud List
Scheduling (CLS), and the other CloudMin–Min Scheduler (CMMS).
Since the originalMin–min algorithmdoes not consider the depen-
dences among tasks, in CMMS the mappable task set must be up-
dated in every scheduling step to maintain the task dependences.
Namely, tasks in the mappable task set are the tasks whose prede-
cessor tasks are all assigned. It isworth noting that this is a first step
to extend the use of Min–min to interacting tasks, yet this modi-
fication affects DAG structures only, and cannot work for the here
considered TIGs, which are a much more general structure.

The problem of allocating TIGs to computing systems is
addressed in several papers but limited either to local area
networks [35] or to clusters of PCs [36], or to grid environments
relatively to dedicated nodes with advance reservation [37], and
restricted to the task grouping [38].



Download English Version:

https://daneshyari.com/en/article/425860

Download Persian Version:

https://daneshyari.com/article/425860

Daneshyari.com

https://daneshyari.com/en/article/425860
https://daneshyari.com/article/425860
https://daneshyari.com

